CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented
Object Detection in Remote Sensing Images
- URL: http://arxiv.org/abs/2101.06849v1
- Date: Mon, 18 Jan 2021 02:31:09 GMT
- Title: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented
Object Detection in Remote Sensing Images
- Authors: Qi Ming, Lingjuan Miao, Zhiqiang Zhou, Yunpeng Dong
- Abstract summary: In this paper, we discuss the role of discriminative features in object detection.
We then propose a Critical Feature Capturing Network (CFC-Net) to improve detection accuracy.
We show that our method achieves superior detection performance compared with many state-of-the-art approaches.
- Score: 0.9462808515258465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection in optical remote sensing images is an important and
challenging task. In recent years, the methods based on convolutional neural
networks have made good progress. However, due to the large variation in object
scale, aspect ratio, and arbitrary orientation, the detection performance is
difficult to be further improved. In this paper, we discuss the role of
discriminative features in object detection, and then propose a Critical
Feature Capturing Network (CFC-Net) to improve detection accuracy from three
aspects: building powerful feature representation, refining preset anchors, and
optimizing label assignment. Specifically, we first decouple the classification
and regression features, and then construct robust critical features adapted to
the respective tasks through the Polarization Attention Module (PAM). With the
extracted discriminative regression features, the Rotation Anchor Refinement
Module (R-ARM) performs localization refinement on preset horizontal anchors to
obtain superior rotation anchors. Next, the Dynamic Anchor Learning (DAL)
strategy is given to adaptively select high-quality anchors based on their
ability to capture critical features. The proposed framework creates more
powerful semantic representations for objects in remote sensing images and
achieves high-performance real-time object detection. Experimental results on
three remote sensing datasets including HRSC2016, DOTA, and UCAS-AOD show that
our method achieves superior detection performance compared with many
state-of-the-art approaches. Code and models are available at
https://github.com/ming71/CFC-Net.
Related papers
- PointOBB: Learning Oriented Object Detection via Single Point
Supervision [55.88982271340328]
This paper proposes PointOBB, the first single Point-based OBB generation method, for oriented object detection.
PointOBB operates through the collaborative utilization of three distinctive views: an original view, a resized view, and a rotated/flipped (rot/flp) view.
Experimental results on the DIOR-R and DOTA-v1.0 datasets demonstrate that PointOBB achieves promising performance.
arXiv Detail & Related papers (2023-11-23T15:51:50Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Hi-ResNet: Edge Detail Enhancement for High-Resolution Remote Sensing Segmentation [10.919956120261539]
High-resolution remote sensing (HRS) semantic segmentation extracts key objects from high-resolution coverage areas.
objects of the same category within HRS images show significant differences in scale and shape across diverse geographical environments.
We propose a High-resolution remote sensing network (Hi-ResNet) with efficient network structure designs.
arXiv Detail & Related papers (2023-05-22T03:58:25Z) - Adaptive Rotated Convolution for Rotated Object Detection [96.94590550217718]
We present Adaptive Rotated Convolution (ARC) module to handle rotated object detection problem.
In our ARC module, the convolution kernels rotate adaptively to extract object features with varying orientations in different images.
The proposed approach achieves state-of-the-art performance on the DOTA dataset with 81.77% mAP.
arXiv Detail & Related papers (2023-03-14T11:53:12Z) - Transformation-Invariant Network for Few-Shot Object Detection in Remote
Sensing Images [15.251042369061024]
Few-shot object detection (FSOD) relies on a large amount of labeled data for training.
Scale and orientation variations of objects in remote sensing images pose significant challenges to existing FSOD methods.
We propose integrating a feature pyramid network and utilizing prototype features to enhance query features.
arXiv Detail & Related papers (2023-03-13T02:21:38Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
A novel context aggregation network (CATNet) is proposed to improve the feature extraction process.
The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid ( SCP), and hierarchical region of interest extractor (HRoIE)
arXiv Detail & Related papers (2021-11-22T08:55:25Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - Align Deep Features for Oriented Object Detection [40.28244152216309]
We propose a single-shot Alignment Network (S$2$A-Net) consisting of two modules: a Feature Alignment Module (FAM) and an Oriented Detection Module (ODM)
The FAM can generate high-quality anchors with an Anchor Refinement Network and adaptively align the convolutional features according to the anchor boxes with a novel Alignment Convolution.
The ODM first adopts active rotating filters to encode the orientation information and then produces orientation-sensitive and orientation-invariant features to alleviate the inconsistency between classification score and localization accuracy.
arXiv Detail & Related papers (2020-08-21T09:55:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.