論文の概要: Bayesian Neural Networks for 2D MRI Segmentation
- arxiv url: http://arxiv.org/abs/2311.14875v3
- Date: Sun, 15 Sep 2024 20:36:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 03:27:25.388596
- Title: Bayesian Neural Networks for 2D MRI Segmentation
- Title(参考訳): 2次元MRIセグメンテーションのためのベイズニューラルネットワーク
- Authors: Lohith Konathala,
- Abstract要約: 本稿では,MRIセグメンテーションのための不確実性認識モデルであるBA U-Netを紹介する。
BA U-Netは正確で解釈可能な結果を提供し、信頼性の高い病理検査に不可欠である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty quantification is vital for safety-critical Deep Learning applications like medical image segmentation. We introduce BA U-Net, an uncertainty-aware model for MRI segmentation that integrates Bayesian Neural Networks with Attention Mechanisms. BA U-Net delivers accurate, interpretable results, crucial for reliable pathology screening. Evaluated on BraTS 2020, this model addresses the critical need for confidence estimation in deep learning-based medical imaging.
- Abstract(参考訳): 不確実性定量化は、医療画像セグメンテーションのような安全クリティカルなディープラーニングアプリケーションに不可欠である。
本稿では,ベイズニューラルネットワークと注意機構を統合したMRIセグメンテーションのための不確実性認識モデルであるBA U-Netを紹介する。
BA U-Netは正確で解釈可能な結果を提供し、信頼性の高い病理検査に不可欠である。
BraTS 2020に基づいて評価されたこのモデルは、深層学習に基づく医療画像における信頼度推定の重要な必要性に対処する。
関連論文リスト
- Enhanced Uncertainty Estimation in Ultrasound Image Segmentation with MSU-Net [13.489622701621698]
MSU-Netは,U-Netのアンサンブルをトレーニングし,正確な超音波画像分割マップを生成するための,新しい多段階アプローチである。
1つのモンテカルロU-Netに対して18.1%の大幅な改善、不確実性評価の強化、モデルの透明性、信頼性を実証する。
論文 参考訳(メタデータ) (2024-07-31T01:36:47Z) - A Trustworthy Framework for Medical Image Analysis with Deep Learning [71.48204494889505]
TRUDLMIAは医用画像解析のための信頼できるディープラーニングフレームワークである。
新型コロナウイルス(COVID-19)などの公衆衛生危機への対応に深層学習の活用を推進していくため、研究者や臨床医を支援することが期待されている。
論文 参考訳(メタデータ) (2022-12-06T05:30:22Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Evaluation of importance estimators in deep learning classifiers for
Computed Tomography [1.6710577107094642]
ディープニューラルネットワークの解釈可能性はしばしば入力特徴の重要性を推定することに依存する。
SmoothGradは2つのバージョンが忠実度とROCランキングを上回り、Integrated GradientsとSmoothGradはDSC評価に優れていた。
モデル中心 (忠実度) と人間中心 (ROC, DSC) 評価の間には重要な相違があった。
論文 参考訳(メタデータ) (2022-09-30T11:57:25Z) - Towards Trustworthy Healthcare AI: Attention-Based Feature Learning for
COVID-19 Screening With Chest Radiography [70.37371604119826]
信頼性を備えたAIモデルの構築は、特に医療などの規制領域において重要である。
これまでの研究では、畳み込みニューラルネットワークをバックボーンアーキテクチャとして使用していた。
本稿では,視覚変換器を用いた特徴学習手法を提案する。
論文 参考訳(メタデータ) (2022-07-19T14:55:42Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
本稿では,2次元CNNと3次元CNNの特徴を融合させることにより,これらの要件を満たす新しいDFENetを提案する。
提案手法は, 既存の方法よりも頑健で正確であり, バイオメディカルな応用に頼ることができる。
論文 参考訳(メタデータ) (2021-05-17T15:43:59Z) - A Feasibility study for Deep learning based automated brain tumor
segmentation using Magnetic Resonance Images [0.0]
深部畳み込みニューラルネットワーク(CNN)に基づく分類ネットワークおよび脳腫瘍MR画像分類および腫瘍局在のための高速RCNNベースの局在ネットワークが開発された。
提案した腫瘍セグメンテーションアーキテクチャの全体的な性能を,精度,境界変位誤差(BDE),Diceスコア,信頼区間などの客観的な品質パラメータを用いて解析した。
セグメント化された出力の信頼度は、専門家の信頼度と同じ範囲にあることが観察されました。
論文 参考訳(メタデータ) (2020-12-22T12:11:42Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Uncertainty Quantification using Variational Inference for Biomedical Image Segmentation [0.0]
我々は,脳腫瘍画像のセグメント化のための変分推論技術に基づくエンコーダデコーダアーキテクチャを用いる。
Dice similarity Coefficient (DSC) と Intersection Over Union (IOU) を指標として, 公開されているBRATSデータセットの評価を行った。
論文 参考訳(メタデータ) (2020-08-12T20:08:04Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
本稿では,AEP-Net と呼ばれる協調的コンテキスト符号化ネットワークを提案する。
具体的には、画像とマスクのより優れた特徴融合のための協調的な特徴変換分岐と、エラー領域の正確な局所化を提案する。
AEP-Netはエラー予測タスクの平均DSCが0.8358,0.8164であり、ピアソン相関係数が0.9873である。
論文 参考訳(メタデータ) (2020-06-25T12:42:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。