Projected Off-Policy Q-Learning (POP-QL) for Stabilizing Offline
Reinforcement Learning
- URL: http://arxiv.org/abs/2311.14885v1
- Date: Sat, 25 Nov 2023 00:30:58 GMT
- Title: Projected Off-Policy Q-Learning (POP-QL) for Stabilizing Offline
Reinforcement Learning
- Authors: Melrose Roderick, Gaurav Manek, Felix Berkenkamp, J. Zico Kolter
- Abstract summary: Projected Off-Policy Q-Learning (POP-QL) is a novel actor-critic algorithm that simultaneously reweights off-policy samples and constrains the policy to prevent divergence and reduce value-approximation error.
In our experiments, POP-QL not only shows competitive performance on standard benchmarks, but also out-performs competing methods in tasks where the data-collection policy is significantly sub-optimal.
- Score: 57.83919813698673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A key problem in off-policy Reinforcement Learning (RL) is the mismatch, or
distribution shift, between the dataset and the distribution over states and
actions visited by the learned policy. This problem is exacerbated in the fully
offline setting. The main approach to correct this shift has been through
importance sampling, which leads to high-variance gradients. Other approaches,
such as conservatism or behavior-regularization, regularize the policy at the
cost of performance. In this paper, we propose a new approach for stable
off-policy Q-Learning. Our method, Projected Off-Policy Q-Learning (POP-QL), is
a novel actor-critic algorithm that simultaneously reweights off-policy samples
and constrains the policy to prevent divergence and reduce value-approximation
error. In our experiments, POP-QL not only shows competitive performance on
standard benchmarks, but also out-performs competing methods in tasks where the
data-collection policy is significantly sub-optimal.
Related papers
- Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Offline Reinforcement Learning with On-Policy Q-Function Regularization [57.09073809901382]
We deal with the (potentially catastrophic) extrapolation error induced by the distribution shift between the history dataset and the desired policy.
We propose two algorithms taking advantage of the estimated Q-function through regularizations, and demonstrate they exhibit strong performance on the D4RL benchmarks.
arXiv Detail & Related papers (2023-07-25T21:38:08Z) - Mitigating Off-Policy Bias in Actor-Critic Methods with One-Step
Q-learning: A Novel Correction Approach [0.0]
We introduce a novel policy similarity measure to mitigate the effects of such discrepancy in continuous control.
Our method offers an adequate single-step off-policy correction that is applicable to deterministic policy networks.
arXiv Detail & Related papers (2022-08-01T11:33:12Z) - Offline Reinforcement Learning with Implicit Q-Learning [85.62618088890787]
Current offline reinforcement learning methods need to query the value of unseen actions during training to improve the policy.
We propose an offline RL method that never needs to evaluate actions outside of the dataset.
This method enables the learned policy to improve substantially over the best behavior in the data through generalization.
arXiv Detail & Related papers (2021-10-12T17:05:05Z) - BRAC+: Improved Behavior Regularized Actor Critic for Offline
Reinforcement Learning [14.432131909590824]
Offline Reinforcement Learning aims to train effective policies using previously collected datasets.
Standard off-policy RL algorithms are prone to overestimations of the values of out-of-distribution (less explored) actions.
We improve the behavior regularized offline reinforcement learning and propose BRAC+.
arXiv Detail & Related papers (2021-10-02T23:55:49Z) - Batch Reinforcement Learning with a Nonparametric Off-Policy Policy
Gradient [34.16700176918835]
Off-policy Reinforcement Learning holds the promise of better data efficiency.
Current off-policy policy gradient methods either suffer from high bias or high variance, delivering often unreliable estimates.
We propose a nonparametric Bellman equation, which can be solved in closed form.
arXiv Detail & Related papers (2020-10-27T13:40:06Z) - DDPG++: Striving for Simplicity in Continuous-control Off-Policy
Reinforcement Learning [95.60782037764928]
We show that simple Deterministic Policy Gradient works remarkably well as long as the overestimation bias is controlled.
Second, we pinpoint training instabilities, typical of off-policy algorithms, to the greedy policy update step.
Third, we show that ideas in the propensity estimation literature can be used to importance-sample transitions from replay buffer and update policy to prevent deterioration of performance.
arXiv Detail & Related papers (2020-06-26T20:21:12Z) - Conservative Q-Learning for Offline Reinforcement Learning [106.05582605650932]
We show that CQL substantially outperforms existing offline RL methods, often learning policies that attain 2-5 times higher final return.
We theoretically show that CQL produces a lower bound on the value of the current policy and that it can be incorporated into a policy learning procedure with theoretical improvement guarantees.
arXiv Detail & Related papers (2020-06-08T17:53:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.