論文の概要: HyperDID: Hyperspectral Intrinsic Image Decomposition with Deep Feature
Embedding
- arxiv url: http://arxiv.org/abs/2311.14899v1
- Date: Sat, 25 Nov 2023 02:05:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-29 23:12:16.140350
- Title: HyperDID: Hyperspectral Intrinsic Image Decomposition with Deep Feature
Embedding
- Title(参考訳): HyperDID:Deep Feature Embeddingを用いたハイパースペクトル固有画像分解
- Authors: Zhiqiang Gong and Xian Zhou and Wen Yao and Xiaohu Zheng and Ping
Zhong
- Abstract要約: 本研究は, 深い特徴埋め込みを導入することで, 分類タスクの超スペクトル固有画像分解について再考する。
提案フレームワークであるHyperDIDには,環境特徴モジュール(EFM)とカテゴリー特徴モジュール(CFM)が組み込まれ,固有の特徴を抽出する。
3つの一般的なデータセットに対する実験結果は、ハイパースペクトル画像分類性能を改善するためにHyperDIDの有効性を検証する。
- 参考スコア(独自算出の注目度): 9.32185717565188
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The dissection of hyperspectral images into intrinsic components through
hyperspectral intrinsic image decomposition (HIID) enhances the
interpretability of hyperspectral data, providing a foundation for more
accurate classification outcomes. However, the classification performance of
HIID is constrained by the model's representational ability. To address this
limitation, this study rethinks hyperspectral intrinsic image decomposition for
classification tasks by introducing deep feature embedding. The proposed
framework, HyperDID, incorporates the Environmental Feature Module (EFM) and
Categorical Feature Module (CFM) to extract intrinsic features. Additionally, a
Feature Discrimination Module (FDM) is introduced to separate
environment-related and category-related features. Experimental results across
three commonly used datasets validate the effectiveness of HyperDID in
improving hyperspectral image classification performance. This novel approach
holds promise for advancing the capabilities of hyperspectral image analysis by
leveraging deep feature embedding principles. The implementation of the
proposed method could be accessed soon at https://github.com/shendu-sw/HyperDID
for the sake of reproducibility.
- Abstract(参考訳): HIID(Hyperspectral Intrinsic Image decomposition)による内在成分へのハイパースペクトル画像の分解は、ハイパースペクトルデータの解釈可能性を高め、より正確な分類結果の基盤となる。
しかし、hiidの分類性能はモデルの表現能力によって制限される。
この制限に対処するため,本研究では,深い特徴埋め込みを導入することで,分類タスクの超スペクトル固有画像分解を再考する。
提案フレームワークであるHyperDIDには,環境特徴モジュール(EFM)とカテゴリー特徴モジュール(CFM)が組み込まれ,固有の特徴を抽出する。
さらに、FDM(Feature Discrimination Module)は、環境関連およびカテゴリ関連の特徴を分離するために導入された。
3つの一般的なデータセットに対する実験結果は、ハイパースペクトル画像分類性能を改善するためにHyperDIDの有効性を検証する。
この新しいアプローチは、深い特徴埋め込みの原則を活用することで、ハイパースペクトル画像解析の能力向上を約束する。
提案手法の実装は、再現性のためにhttps://github.com/shendu-sw/HyperDIDですぐにアクセスできる。
関連論文リスト
- Hyperbolic Image-and-Pointcloud Contrastive Learning for 3D Classification [14.439996427728483]
双曲型画像・ポイントクラウドコントラスト学習法(HyperIPC)を提案する。
モジュラー内分岐に対しては、点雲の双曲的埋め込み表現を探索するために、本質的な幾何学的構造に依存する。
クロスモーダルブランチでは、画像を利用してポイントクラウドをガイドし、強力なセマンティック階層的相関を確立する。
論文 参考訳(メタデータ) (2024-09-24T07:13:37Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
我々は拡散と変圧器技術を組み合わせたDiffSpectralNetと呼ばれる新しいネットワークを提案する。
まず,拡散モデルに基づく教師なし学習フレームワークを用いて,高レベル・低レベルのスペクトル空間的特徴を抽出する。
この拡散法はスペクトル空間の特徴を多様かつ有意義に抽出し,HSI分類の改善につながる。
論文 参考訳(メタデータ) (2023-10-29T15:26:37Z) - Latent Space Energy-based Model for Fine-grained Open Set Recognition [46.0388856095674]
微細なオープンセット認識(FineOSR)は、未知のクラスのイメージを拒絶しながら、微妙な外観の違いを持つクラスに属する画像を認識することを目的としている。
生成モデルの一種として、エネルギーベースモデル(EBM)は、生成的タスクと識別的タスクのハイブリッドモデリングのポテンシャルである。
本稿では,OSRの精密な視覚空間におけるエネルギーに基づく事前分布を用いた低次元潜伏空間について検討する。
論文 参考訳(メタデータ) (2023-09-19T16:00:09Z) - Object Detection in Hyperspectral Image via Unified Spectral-Spatial
Feature Aggregation [55.9217962930169]
S2ADetは、高スペクトル画像に固有の豊富なスペクトル情報と空間補完情報を利用する物体検出器である。
S2ADetは既存の最先端メソッドを超え、堅牢で信頼性の高い結果を達成する。
論文 参考訳(メタデータ) (2023-06-14T09:01:50Z) - Adaptive Graph Convolution Module for Salient Object Detection [7.278033100480174]
本稿では,複雑なシーンを扱うための適応型グラフ畳み込みモジュール(AGCM)を提案する。
学習可能な領域生成層を用いて入力画像からプロトタイプ特徴を抽出する。
提案したAGCMは,SOD性能を定量的かつ定量的に劇的に向上させる。
論文 参考訳(メタデータ) (2023-03-17T07:07:17Z) - Deep Diversity-Enhanced Feature Representation of Hyperspectral Images [87.47202258194719]
トポロジを改良して3次元畳み込みを補正し,上行階の高次化を図る。
また、要素間の独立性を最大化するために特徴マップに作用する新しい多様性対応正規化(DA-Reg)項を提案する。
提案したRe$3$-ConvSetとDA-Regの優位性を実証するために,様々なHS画像処理および解析タスクに適用する。
論文 参考訳(メタデータ) (2023-01-15T16:19:18Z) - Hierarchical Forgery Classifier On Multi-modality Face Forgery Clues [61.37306431455152]
我々は,HFC-MFFD (hierarchical Forgery for Multi-modality Face Forgery Detection) を提案する。
HFC-MFFDは、マルチモーダルシナリオにおけるフォージェリー認証を強化するために、堅牢なパッチベースのハイブリッド表現を学習する。
クラス不均衡問題を緩和し、さらに検出性能を高めるために、特定の階層的な顔偽造を提案する。
論文 参考訳(メタデータ) (2022-12-30T10:54:29Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
本稿では,高スペクトル画像の高次元空間スペクトル情報を効率的に効率的に埋め込む方法について述べる。
我々は,HS埋め込みを,慎重に定義されたHS埋め込みイベントの集合の後方分布の近似として定式化する。
そして,提案手法を物理的に解釈可能なソース一貫性超解像フレームワークに組み込む。
3つの一般的なベンチマークデータセットに対する実験により、PDE-Netは最先端の手法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2022-05-30T06:59:01Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。