E-CORE: Emotion Correlation Enhanced Empathetic Dialogue Generation
- URL: http://arxiv.org/abs/2311.15016v1
- Date: Sat, 25 Nov 2023 12:47:39 GMT
- Title: E-CORE: Emotion Correlation Enhanced Empathetic Dialogue Generation
- Authors: Fengyi Fu, Lei Zhang, Quan Wang, Zhendong Mao
- Abstract summary: We propose a novel emotion correlation enhanced empathetic dialogue generation framework.
Specifically, a multi-resolution emotion graph is devised to capture context-based emotion interactions.
We then propose an emotion correlation enhanced decoder, with a novel correlation-aware aggregation and soft/hard strategy.
- Score: 33.57399405783864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving empathy is a crucial step toward humanized dialogue systems.
Current approaches for empathetic dialogue generation mainly perceive an
emotional label to generate an empathetic response conditioned on it, which
simply treat emotions independently, but ignore the intrinsic emotion
correlation in dialogues, resulting in inaccurate emotion perception and
unsuitable response generation. In this paper, we propose a novel emotion
correlation enhanced empathetic dialogue generation framework, which
comprehensively realizes emotion correlation learning, utilization, and
supervising. Specifically, a multi-resolution emotion graph is devised to
capture context-based emotion interactions from different resolutions, further
modeling emotion correlation. Then we propose an emotion correlation enhanced
decoder, with a novel correlation-aware aggregation and soft/hard strategy,
respectively improving the emotion perception and response generation.
Experimental results on the benchmark dataset demonstrate the superiority of
our model in both empathetic perception and expression.
Related papers
- CTSM: Combining Trait and State Emotions for Empathetic Response Model [2.865464162057812]
Empathetic response generation endeavors to empower dialogue systems to perceive speakers' emotions and generate empathetic responses accordingly.
We propose Combining Trait and State emotions for Empathetic Response Model (CTSM)
To sufficiently perceive emotions in dialogue, we first construct and encode trait and state emotion embeddings.
We further enhance emotional perception capability through an emotion guidance module that guides emotion representation.
arXiv Detail & Related papers (2024-03-22T10:45:13Z) - Exploiting Emotion-Semantic Correlations for Empathetic Response
Generation [18.284296904390143]
Empathetic response generation aims to generate empathetic responses by understanding the speaker's emotional feelings from the language of dialogue.
Recent methods capture emotional words in the language of communicators and construct them as static vectors to perceive nuanced emotions.
We propose a dynamical Emotion-Semantic Correlation Model (ESCM) for empathetic dialogue generation tasks.
arXiv Detail & Related papers (2024-02-27T11:50:05Z) - Empathetic Response Generation via Emotion Cause Transition Graph [29.418144401849194]
Empathetic dialogue is a human-like behavior that requires the perception of both affective factors (e.g., emotion status) and cognitive factors (e.g., cause of the emotion)
We propose an emotion cause transition graph to explicitly model the natural transition of emotion causes between two adjacent turns in empathetic dialogue.
With this graph, the concept words of the emotion causes in the next turn can be predicted and used by a specifically designed concept-aware decoder to generate the empathic response.
arXiv Detail & Related papers (2023-02-23T05:51:17Z) - Empathetic Dialogue Generation via Sensitive Emotion Recognition and
Sensible Knowledge Selection [47.60224978460442]
We propose a Serial and Emotion-Knowledge interaction (SEEK) method for empathetic dialogue generation.
We use a fine-grained encoding strategy which is more sensitive to the emotion dynamics (emotion flow) in the conversations to predict the emotion-intent characteristic of response. Besides, we design a novel framework to model the interaction between knowledge and emotion to generate more sensible response.
arXiv Detail & Related papers (2022-10-21T03:51:18Z) - CASE: Aligning Coarse-to-Fine Cognition and Affection for Empathetic
Response Generation [59.8935454665427]
Empathetic dialogue models usually consider only the affective aspect or treat cognition and affection in isolation.
We propose the CASE model for empathetic dialogue generation.
arXiv Detail & Related papers (2022-08-18T14:28:38Z) - Perspective-taking and Pragmatics for Generating Empathetic Responses
Focused on Emotion Causes [50.569762345799354]
We argue that two issues must be tackled at the same time: (i) identifying which word is the cause for the other's emotion from his or her utterance and (ii) reflecting those specific words in the response generation.
Taking inspiration from social cognition, we leverage a generative estimator to infer emotion cause words from utterances with no word-level label.
arXiv Detail & Related papers (2021-09-18T04:22:49Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
Experiments on real-world data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of both content coherence and emotion appropriateness.
arXiv Detail & Related papers (2021-06-06T06:26:15Z) - MIME: MIMicking Emotions for Empathetic Response Generation [82.57304533143756]
Current approaches to empathetic response generation view the set of emotions expressed in the input text as a flat structure.
We argue that empathetic responses often mimic the emotion of the user to a varying degree, depending on its positivity or negativity and content.
arXiv Detail & Related papers (2020-10-04T00:35:47Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
Lack of external knowledge makes empathetic dialogue systems difficult to perceive implicit emotions and learn emotional interactions from limited dialogue history.
We propose to leverage external knowledge, including commonsense knowledge and emotional lexical knowledge, to explicitly understand and express emotions in empathetic dialogue generation.
arXiv Detail & Related papers (2020-09-21T09:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.