論文の概要: A Comparative Study of Watering Hole Attack Detection Using Supervised Neural Network
- arxiv url: http://arxiv.org/abs/2311.15024v3
- Date: Mon, 12 Feb 2024 20:18:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 15:51:52.154836
- Title: A Comparative Study of Watering Hole Attack Detection Using Supervised Neural Network
- Title(参考訳): ニューラルネットワークを用いた水穴検出の比較検討
- Authors: Mst. Nishita Aktar, Sornali Akter, Md. Nusaim Islam Saad, Jakir Hosen Jisun, Kh. Mustafizur Rahman, Md. Nazmus Sakib,
- Abstract要約: 本研究では、これらの攻撃を検知・防止するために、教師付きニューラルネットワークを用いた「水穴攻撃」として知られる悪質な戦術について検討する。
ニューラルネットワークは、そのような攻撃に関連するウェブサイトの行動とネットワークトラフィックのパターンを特定する。
予防に関して言えば、このモデルは95%の攻撃をうまく停止し、堅牢なユーザー保護を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The state of security demands innovative solutions to defend against targeted attacks due to the growing sophistication of cyber threats. This study explores the nefarious tactic known as "watering hole attacks using supervised neural networks to detect and prevent these attacks. The neural network identifies patterns in website behavior and network traffic associated with such attacks. Testing on a dataset of confirmed attacks shows a 99% detection rate with a mere 0.1% false positive rate, demonstrating the model's effectiveness. In terms of prevention, the model successfully stops 95% of attacks, providing robust user protection. The study also suggests mitigation strategies, including web filtering solutions, user education, and security controls. Overall, this research presents a promising solution for countering watering hole attacks, offering strong detection, prevention, and mitigation strategies.
- Abstract(参考訳): セキュリティの状況は、サイバー脅威の高度化により標的攻撃から守る革新的な解決策を要求している。
本研究では、これらの攻撃を検知・防止するために、教師付きニューラルネットワークを用いた「水穴攻撃」として知られる悪質な戦術について検討する。
ニューラルネットワークは、そのような攻撃に関連するウェブサイトの行動とネットワークトラフィックのパターンを特定する。
確認された攻撃のデータセットをテストすると、わずか0.1%の偽陽性率で99%の検出率を示し、モデルの有効性を示している。
予防に関して言えば、このモデルは95%の攻撃をうまく停止し、堅牢なユーザー保護を提供する。
この研究は、Webフィルタリングソリューション、ユーザ教育、セキュリティコントロールを含む緩和戦略も提案している。
全体として、この研究は、強力な検知、予防、緩和戦略を提供する、防水孔攻撃に対抗するための有望な解決策を提示する。
関連論文リスト
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - EaTVul: ChatGPT-based Evasion Attack Against Software Vulnerability Detection [19.885698402507145]
敵対的な例は、ディープニューラルネットワーク内の脆弱性を悪用することができる。
本研究は,攻撃成功率100%を達成できる敵対攻撃に対する深層学習モデルの感受性を示す。
論文 参考訳(メタデータ) (2024-07-27T09:04:54Z) - Leveraging Reinforcement Learning in Red Teaming for Advanced Ransomware Attack Simulations [7.361316528368866]
本稿では,ランサムウェア攻撃のシミュレーションに強化学習(RL)を利用する新しい手法を提案する。
実世界のネットワークを模倣するシミュレーション環境でRLエージェントを訓練することにより、効果的な攻撃戦略を迅速に学習することができる。
152ホストのサンプルネットワークの実験結果から,提案手法の有効性が確認された。
論文 参考訳(メタデータ) (2024-06-25T14:16:40Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
現代のNLPモデルは、様々なソースから引き出された公開データセットでしばしば訓練される。
データ中毒攻撃は、攻撃者が設計した方法でモデルの振る舞いを操作できる。
バックドア攻撃に伴うリスクを軽減するために、いくつかの戦略が提案されている。
論文 参考訳(メタデータ) (2024-05-19T14:50:09Z) - Mitigating Label Flipping Attacks in Malicious URL Detectors Using
Ensemble Trees [16.16333915007336]
悪意のあるURLは、交通、医療、エネルギー、銀行など、様々な産業で敵対的な機会を提供する。
バックドア攻撃は、ラベルフリップ(LF)など、少数のトレーニングデータラベルを操作することで、良質なラベルを悪意のあるラベルに変更し、その逆を処理します。
本稿では,有毒なラベルの存在を検知するアラームシステムと,オリジナルクラスラベルの発見を目的とした防御機構を提案する。
論文 参考訳(メタデータ) (2024-03-05T14:21:57Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - Early Detection of Network Attacks Using Deep Learning [0.0]
ネットワーク侵入検知システム(英: Network Intrusion Detection System、IDS)は、ネットワークトラフィックを観察することによって、不正かつ悪意のない行動を特定するためのツールである。
本稿では,攻撃対象のシステムにダメージを与える前に,ネットワーク攻撃を防止するために,エンド・ツー・エンドの早期侵入検知システムを提案する。
論文 参考訳(メタデータ) (2022-01-27T16:35:37Z) - Certifiers Make Neural Networks Vulnerable to Availability Attacks [70.69104148250614]
私たちは初めて、逆転戦略が敵によって意図的に引き起こされる可能性があることを示します。
いくつかの入力や摂動のために自然に発生する障害に加えて、敵は故意にフォールバックを誘発するために訓練時間攻撃を使用することができる。
我々は2つの新しいアベイラビリティーアタックを設計し、これらの脅威の実用的妥当性を示す。
論文 参考訳(メタデータ) (2021-08-25T15:49:10Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
本稿では,TANTRA(Adversarial Network Traffic Reshaping Attack)を提案する。
我々の回避攻撃は、ターゲットネットワークの良性パケット間の時間差を学習するために訓練された長い短期記憶(LSTM)ディープニューラルネットワーク(DNN)を利用する。
TANTRAは、ネットワーク侵入検出システム回避の平均成功率99.99%を達成します。
論文 参考訳(メタデータ) (2021-03-10T19:03:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。