InstaStyle: Inversion Noise of a Stylized Image is Secretly a Style Adviser
- URL: http://arxiv.org/abs/2311.15040v3
- Date: Fri, 12 Jul 2024 04:10:23 GMT
- Title: InstaStyle: Inversion Noise of a Stylized Image is Secretly a Style Adviser
- Authors: Xing Cui, Zekun Li, Pei Pei Li, Huaibo Huang, Xuannan Liu, Zhaofeng He,
- Abstract summary: In this paper, we propose InstaStyle, a novel approach that excels in generating high-fidelity stylized images with only a single reference image.
Our approach is based on the finding that the inversion noise from a stylized reference image inherently carries the style signal.
We introduce a learnable style token via prompt refinement, which enhances the accuracy of the style description for the reference image.
- Score: 19.466860144772674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stylized text-to-image generation focuses on creating images from textual descriptions while adhering to a style specified by a few reference images. However, subtle style variations within different reference images can hinder the model from accurately learning the target style. In this paper, we propose InstaStyle, a novel approach that excels in generating high-fidelity stylized images with only a single reference image. Our approach is based on the finding that the inversion noise from a stylized reference image inherently carries the style signal, as evidenced by their non-zero signal-to-noise ratio. We employ DDIM inversion to extract this noise from the reference image and leverage a diffusion model to generate new stylized images from the "style" noise. Additionally, the inherent ambiguity and bias of textual prompts impede the precise conveying of style. To address this, we introduce a learnable style token via prompt refinement, which enhances the accuracy of the style description for the reference image. Qualitative and quantitative experimental results demonstrate that InstaStyle achieves superior performance compared to current benchmarks. Furthermore, our approach also showcases its capability in the creative task of style combination with mixed inversion noise.
Related papers
- Beyond Color and Lines: Zero-Shot Style-Specific Image Variations with Coordinated Semantics [3.9717825324709413]
Style has been primarily considered in terms of artistic elements such as colors, brushstrokes, and lighting.
In this study, we propose a zero-shot scheme for image variation with coordinated semantics.
arXiv Detail & Related papers (2024-10-24T08:34:57Z) - ZePo: Zero-Shot Portrait Stylization with Faster Sampling [61.14140480095604]
This paper presents an inversion-free portrait stylization framework based on diffusion models that accomplishes content and style feature fusion in merely four sampling steps.
We propose a feature merging strategy to amalgamate redundant features in Consistency Features, thereby reducing the computational load of attention control.
arXiv Detail & Related papers (2024-08-10T08:53:41Z) - ArtWeaver: Advanced Dynamic Style Integration via Diffusion Model [73.95608242322949]
Stylized Text-to-Image Generation (STIG) aims to generate images from text prompts and style reference images.
We present ArtWeaver, a novel framework that leverages pretrained Stable Diffusion to address challenges such as misinterpreted styles and inconsistent semantics.
arXiv Detail & Related papers (2024-05-24T07:19:40Z) - InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation [5.364489068722223]
The concept of style is inherently underdetermined, encompassing a multitude of elements such as color, material, atmosphere, design, and structure.
Inversion-based methods are prone to style degradation, often resulting in the loss of fine-grained details.
adapter-based approaches frequently require meticulous weight tuning for each reference image to achieve a balance between style intensity and text controllability.
arXiv Detail & Related papers (2024-04-03T13:34:09Z) - Style Aligned Image Generation via Shared Attention [61.121465570763085]
We introduce StyleAligned, a technique designed to establish style alignment among a series of generated images.
By employing minimal attention sharing' during the diffusion process, our method maintains style consistency across images within T2I models.
Our method's evaluation across diverse styles and text prompts demonstrates high-quality and fidelity.
arXiv Detail & Related papers (2023-12-04T18:55:35Z) - StyleAdapter: A Unified Stylized Image Generation Model [97.24936247688824]
StyleAdapter is a unified stylized image generation model capable of producing a variety of stylized images.
It can be integrated with existing controllable synthesis methods, such as T2I-adapter and ControlNet.
arXiv Detail & Related papers (2023-09-04T19:16:46Z) - DiffStyler: Controllable Dual Diffusion for Text-Driven Image
Stylization [66.42741426640633]
DiffStyler is a dual diffusion processing architecture to control the balance between the content and style of diffused results.
We propose a content image-based learnable noise on which the reverse denoising process is based, enabling the stylization results to better preserve the structure information of the content image.
arXiv Detail & Related papers (2022-11-19T12:30:44Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) is a new style representation learning and style transfer method via contrastive learning.
Our framework consists of three key components, i.e., a multi-layer style projector for style code encoding, a domain enhancement module for effective learning of style distribution, and a generative network for image style transfer.
arXiv Detail & Related papers (2022-05-19T13:11:24Z) - STALP: Style Transfer with Auxiliary Limited Pairing [36.23393954839379]
We present an approach to example-based stylization of images that uses a single pair of a source image and its stylized counterpart.
We demonstrate how to train an image translation network that can perform real-time semantically meaningful style transfer to a set of target images.
arXiv Detail & Related papers (2021-10-20T11:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.