Beyond Color and Lines: Zero-Shot Style-Specific Image Variations with Coordinated Semantics
- URL: http://arxiv.org/abs/2410.18537v1
- Date: Thu, 24 Oct 2024 08:34:57 GMT
- Title: Beyond Color and Lines: Zero-Shot Style-Specific Image Variations with Coordinated Semantics
- Authors: Jinghao Hu, Yuhe Zhang, GuoHua Geng, Liuyuxin Yang, JiaRui Yan, Jingtao Cheng, YaDong Zhang, Kang Li,
- Abstract summary: Style has been primarily considered in terms of artistic elements such as colors, brushstrokes, and lighting.
In this study, we propose a zero-shot scheme for image variation with coordinated semantics.
- Score: 3.9717825324709413
- License:
- Abstract: Traditionally, style has been primarily considered in terms of artistic elements such as colors, brushstrokes, and lighting. However, identical semantic subjects, like people, boats, and houses, can vary significantly across different artistic traditions, indicating that style also encompasses the underlying semantics. Therefore, in this study, we propose a zero-shot scheme for image variation with coordinated semantics. Specifically, our scheme transforms the image-to-image problem into an image-to-text-to-image problem. The image-to-text operation employs vision-language models e.g., BLIP) to generate text describing the content of the input image, including the objects and their positions. Subsequently, the input style keyword is elaborated into a detailed description of this style and then merged with the content text using the reasoning capabilities of ChatGPT. Finally, the text-to-image operation utilizes a Diffusion model to generate images based on the text prompt. To enable the Diffusion model to accommodate more styles, we propose a fine-tuning strategy that injects text and style constraints into cross-attention. This ensures that the output image exhibits similar semantics in the desired style. To validate the performance of the proposed scheme, we constructed a benchmark comprising images of various styles and scenes and introduced two novel metrics. Despite its simplicity, our scheme yields highly plausible results in a zero-shot manner, particularly for generating stylized images with high-fidelity semantics.
Related papers
- FAGStyle: Feature Augmentation on Geodesic Surface for Zero-shot Text-guided Diffusion Image Style Transfer [2.3293561091456283]
The goal of image style transfer is to render an image guided by a style reference while maintaining the original content.
We introduce FAGStyle, a zero-shot text-guided diffusion image style transfer method.
Our approach enhances inter-patch information interaction by incorporating the Sliding Window Crop technique.
arXiv Detail & Related papers (2024-08-20T04:20:11Z) - ArtWeaver: Advanced Dynamic Style Integration via Diffusion Model [73.95608242322949]
Stylized Text-to-Image Generation (STIG) aims to generate images from text prompts and style reference images.
We present ArtWeaver, a novel framework that leverages pretrained Stable Diffusion to address challenges such as misinterpreted styles and inconsistent semantics.
arXiv Detail & Related papers (2024-05-24T07:19:40Z) - InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation [5.364489068722223]
The concept of style is inherently underdetermined, encompassing a multitude of elements such as color, material, atmosphere, design, and structure.
Inversion-based methods are prone to style degradation, often resulting in the loss of fine-grained details.
adapter-based approaches frequently require meticulous weight tuning for each reference image to achieve a balance between style intensity and text controllability.
arXiv Detail & Related papers (2024-04-03T13:34:09Z) - Pick-and-Draw: Training-free Semantic Guidance for Text-to-Image
Personalization [56.12990759116612]
Pick-and-Draw is a training-free semantic guidance approach to boost identity consistency and generative diversity for personalization methods.
The proposed approach can be applied to any personalized diffusion models and requires as few as a single reference image.
arXiv Detail & Related papers (2024-01-30T05:56:12Z) - Style Aligned Image Generation via Shared Attention [61.121465570763085]
We introduce StyleAligned, a technique designed to establish style alignment among a series of generated images.
By employing minimal attention sharing' during the diffusion process, our method maintains style consistency across images within T2I models.
Our method's evaluation across diverse styles and text prompts demonstrates high-quality and fidelity.
arXiv Detail & Related papers (2023-12-04T18:55:35Z) - InstaStyle: Inversion Noise of a Stylized Image is Secretly a Style Adviser [19.466860144772674]
In this paper, we propose InstaStyle, a novel approach that excels in generating high-fidelity stylized images with only a single reference image.
Our approach is based on the finding that the inversion noise from a stylized reference image inherently carries the style signal.
We introduce a learnable style token via prompt refinement, which enhances the accuracy of the style description for the reference image.
arXiv Detail & Related papers (2023-11-25T14:38:54Z) - ControlStyle: Text-Driven Stylized Image Generation Using Diffusion
Priors [105.37795139586075]
We propose a new task for stylizing'' text-to-image models, namely text-driven stylized image generation.
We present a new diffusion model (ControlStyle) via upgrading a pre-trained text-to-image model with a trainable modulation network.
Experiments demonstrate the effectiveness of our ControlStyle in producing more visually pleasing and artistic results.
arXiv Detail & Related papers (2023-11-09T15:50:52Z) - DiffStyler: Controllable Dual Diffusion for Text-Driven Image
Stylization [66.42741426640633]
DiffStyler is a dual diffusion processing architecture to control the balance between the content and style of diffused results.
We propose a content image-based learnable noise on which the reverse denoising process is based, enabling the stylization results to better preserve the structure information of the content image.
arXiv Detail & Related papers (2022-11-19T12:30:44Z) - APRNet: Attention-based Pixel-wise Rendering Network for Photo-Realistic
Text Image Generation [11.186226578337125]
Style-guided text image generation tries to synthesize text image by imitating reference image's appearance.
In this paper, we focus on transferring style image's background and foreground color patterns to the content image to generate photo-realistic text image.
arXiv Detail & Related papers (2022-03-15T07:48:34Z) - CLIPstyler: Image Style Transfer with a Single Text Condition [34.24876359759408]
Existing neural style transfer methods require reference style images to transfer texture information of style images to content images.
We propose a new framework that enables a style transfer without' a style image, but only with a text description of the desired style.
arXiv Detail & Related papers (2021-12-01T09:48:53Z) - TediGAN: Text-Guided Diverse Face Image Generation and Manipulation [52.83401421019309]
TediGAN is a framework for multi-modal image generation and manipulation with textual descriptions.
StyleGAN inversion module maps real images to the latent space of a well-trained StyleGAN.
visual-linguistic similarity learns the text-image matching by mapping the image and text into a common embedding space.
instance-level optimization is for identity preservation in manipulation.
arXiv Detail & Related papers (2020-12-06T16:20:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.