論文の概要: Task adaption by biologically inspired stochastic comodulation
- arxiv url: http://arxiv.org/abs/2311.15053v1
- Date: Sat, 25 Nov 2023 15:21:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-29 22:04:47.890863
- Title: Task adaption by biologically inspired stochastic comodulation
- Title(参考訳): 生物学的刺激による確率的コモディションによるタスク適応
- Authors: Gauthier Boeshertz, Caroline Haimerl and Cristina Savin
- Abstract要約: 我々は、利得変調による微調整畳み込みネットワークが、決定論的利得変調を改善することを示す。
この結果から,コモディレーション表現はマルチタスク学習における学習効率と性能を向上させることが示唆された。
- 参考スコア(独自算出の注目度): 8.59194778459436
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain representations must strike a balance between generalizability and
adaptability. Neural codes capture general statistical regularities in the
world, while dynamically adjusting to reflect current goals. One aspect of this
adaptation is stochastically co-modulating neurons' gains based on their task
relevance. These fluctuations then propagate downstream to guide
decision-making. Here, we test the computational viability of such a scheme in
the context of multi-task learning. We show that fine-tuning convolutional
networks by stochastic gain modulation improves on deterministic gain
modulation, achieving state-of-the-art results on the CelebA dataset. To better
understand the mechanisms supporting this improvement, we explore how
fine-tuning performance is affected by architecture using Cifar-100. Overall,
our results suggest that stochastic comodulation can enhance learning
efficiency and performance in multi-task learning, without additional learnable
parameters. This offers a promising new direction for developing more flexible
and robust intelligent systems.
- Abstract(参考訳): 脳の表現は、一般化性と適応性のバランスをとらなければならない。
ニューラルネットワークは、現在の目標を反映するように動的に調整しながら、世界中の一般的な統計規則を捉える。
この適応の1つの側面は、そのタスクの関連性に基づいてニューロンの利得を確率的に共調節することである。
これらの変動は、意思決定を導くために下流に伝播する。
本稿では,マルチタスク学習の文脈において,そのようなスキームの計算可能性をテストする。
確率ゲイン変調による微調整畳み込み畳み込みネットワークは、決定論的ゲイン変調により改善し、celebaデータセットで最先端の結果が得られることを示す。
この改善を支えるメカニズムをより深く理解するために,Cifar-100を用いたアーキテクチャによる微調整性能への影響について検討する。
総じて,確率的共変性は,学習可能なパラメータを追加することなく,マルチタスク学習における学習効率とパフォーマンスを向上させることを示唆する。
これは、より柔軟で堅牢なインテリジェントシステムを開発するための、有望な新しい方向性を提供する。
関連論文リスト
- Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
本研究では,ニューラルネットワークをアンサンブル手法として活用することを検討する。
低多様性のアンサンブルを学習するリスクを動機として,ベースモデル予測をランダムにドロップすることでモデルの正規化を提案する。
このアプローチはアンサンブル内の多様性を低くし、オーバーフィッティングを減らし、一般化能力を向上させる。
論文 参考訳(メタデータ) (2024-10-06T15:25:39Z) - Super Level Sets and Exponential Decay: A Synergistic Approach to Stable Neural Network Training [0.0]
指数減衰と高度な反オーバーフィッティング戦略を統合する動的学習率アルゴリズムを開発した。
適応学習率の影響を受けて、損失関数の超レベル集合が常に連結であることを証明する。
論文 参考訳(メタデータ) (2024-09-25T09:27:17Z) - Incorporating Neuro-Inspired Adaptability for Continual Learning in
Artificial Intelligence [59.11038175596807]
継続的な学習は、現実世界に強い適応性を持つ人工知能を強化することを目的としている。
既存の進歩は主に、破滅的な忘れを克服するために記憶安定性を維持することに焦点を当てている。
本稿では,学習の可塑性を改善するため,パラメータ分布の古い記憶を適切に減衰させる汎用的手法を提案する。
論文 参考訳(メタデータ) (2023-08-29T02:43:58Z) - Accelerated Training via Incrementally Growing Neural Networks using
Variance Transfer and Learning Rate Adaptation [34.7523496790944]
本研究では,ニューラルネットワークを効率的に成長させる手法を開発し,パラメータ化と最適化の戦略をトレーニングダイナミクスを考慮して設計する。
提案手法は,従来のトレーニング予算の大部分を節約しつつ,大規模な固定サイズモデルのトレーニングよりも高い精度で達成可能であることを示す。
論文 参考訳(メタデータ) (2023-06-22T07:06:45Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Towards Understanding the Link Between Modularity and Performance in Neural Networks for Reinforcement Learning [2.038038953957366]
最適性能のためのネットワークモジュラリティの量は、ネットワークの他の多くの特徴と問題環境の間の複雑な関係に絡み合っている可能性が高い。
我々は、ニューラルネットワークアーキテクチャのリッチで自動最適化と探索を可能にする古典的な神経進化アルゴリズムを使用した。
論文 参考訳(メタデータ) (2022-05-13T05:18:18Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
本稿では,動的一般化のためのマルチヘッドダイナミックスモデルを学習するモデルベース強化学習アルゴリズムを提案する。
文脈学習は,過去の経験から得られる動的情報からコンテキスト潜在ベクトルにエンコードする。
提案手法は,最先端のRL法と比較して,様々な制御タスクにおいて優れたゼロショット一般化性能を示す。
論文 参考訳(メタデータ) (2020-10-26T03:20:42Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
レジリエンスとモメンタム(AdaRem)を用いた適応勾配法を提案する。
AdaRemは、過去の1つのパラメータの変化方向が現在の勾配の方向と一致しているかどうかに応じてパラメータワイズ学習率を調整する。
本手法は,学習速度とテスト誤差の観点から,従来の適応学習率に基づくアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-10-21T14:49:00Z) - Gradient Monitored Reinforcement Learning [0.0]
我々は、強化学習アルゴリズムにおける訓練の強化と評価性能に焦点をあてる。
本稿では,トレーニングプロセス自体からの動的発達とフィードバックに基づいて,ニューラルネットワークの重みパラメータの学習をステアリングする手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T13:45:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。