Fine-Grained Unsupervised Cross-Modality Domain Adaptation for
Vestibular Schwannoma Segmentation
- URL: http://arxiv.org/abs/2311.15090v1
- Date: Sat, 25 Nov 2023 18:08:59 GMT
- Title: Fine-Grained Unsupervised Cross-Modality Domain Adaptation for
Vestibular Schwannoma Segmentation
- Authors: Luyi Han, Tao Tan, Ritse Mann
- Abstract summary: We focus on introducing a fine-grained unsupervised framework for domain adaptation.
We propose to use a vector to control the generator to synthesize a fake image with given features.
And then, we can apply various augmentations to the dataset by searching the feature dictionary.
- Score: 3.0081059328558624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The domain adaptation approach has gained significant acceptance in
transferring styles across various vendors and centers, along with filling the
gaps in modalities. However, multi-center application faces the challenge of
the difficulty of domain adaptation due to their intra-domain differences. We
focus on introducing a fine-grained unsupervised framework for domain
adaptation to facilitate cross-modality segmentation of vestibular schwannoma
(VS) and cochlea. We propose to use a vector to control the generator to
synthesize a fake image with given features. And then, we can apply various
augmentations to the dataset by searching the feature dictionary. The diversity
augmentation can increase the performance and robustness of the segmentation
model. On the CrossMoDA validation phase Leaderboard, our method received a
mean Dice score of 0.765 and 0.836 on VS and cochlea, respectively.
Related papers
- MS-MT: Multi-Scale Mean Teacher with Contrastive Unpaired Translation
for Cross-Modality Vestibular Schwannoma and Cochlea Segmentation [11.100048696665496]
unsupervised domain adaptation (UDA) methods have achieved promising cross-modality segmentation performance.
We propose a multi-scale self-ensembling based UDA framework for automatic segmentation of two key brain structures.
Our method demonstrates promising segmentation performance with a mean Dice score of 83.8% and 81.4%.
arXiv Detail & Related papers (2023-03-28T08:55:00Z) - Exploring Consistency in Cross-Domain Transformer for Domain Adaptive
Semantic Segmentation [51.10389829070684]
Domain gap can cause discrepancies in self-attention.
Due to this gap, the transformer attends to spurious regions or pixels, which deteriorates accuracy on the target domain.
We propose adaptation on attention maps with cross-domain attention layers.
arXiv Detail & Related papers (2022-11-27T02:40:33Z) - Unsupervised Cross-Modality Domain Adaptation for Vestibular Schwannoma
Segmentation and Koos Grade Prediction based on Semi-Supervised Contrastive
Learning [1.5953825926551457]
unsupervised domain adaptation framework for cross-modality vestibular schwannoma (VS) and cochlea segmentation and Koos grade prediction.
nnU-Net model is utilized for VS and cochlea segmentation, while a semi-supervised contrastive learning pre-train approach is employed to improve the model performance.
Our method received rank 4 in task1 with a mean Dice score of 0.8394 and rank 2 in task2 with Macro-Average Mean Square Error of 0.3941.
arXiv Detail & Related papers (2022-10-09T13:12:20Z) - Enhancing Data Diversity for Self-training Based Unsupervised
Cross-modality Vestibular Schwannoma and Cochlea Segmentation [7.327638441664658]
We present an approach for VS and cochlea segmentation in an unsupervised domain adaptation setting.
We first develop a cross-site cross-modality unpaired image translation strategy to enrich the diversity of the synthesized data.
Then, we devise a rule-based offline augmentation technique to further minimize the domain gap.
Lastly, we adopt a self-configuring segmentation framework empowered by self-training to obtain the final results.
arXiv Detail & Related papers (2022-09-23T22:26:51Z) - UniDAformer: Unified Domain Adaptive Panoptic Segmentation Transformer
via Hierarchical Mask Calibration [49.16591283724376]
We design UniDAformer, a unified domain adaptive panoptic segmentation transformer that is simple but can achieve domain adaptive instance segmentation and semantic segmentation simultaneously within a single network.
UniDAformer introduces Hierarchical Mask (HMC) that rectifies inaccurate predictions at the level of regions, superpixels and annotated pixels via online self-training on the fly.
It has three unique features: 1) it enables unified domain adaptive panoptic adaptation; 2) it mitigates false predictions and improves domain adaptive panoptic segmentation effectively; 3) it is end-to-end trainable with a much simpler training and inference pipeline.
arXiv Detail & Related papers (2022-06-30T07:32:23Z) - Unsupervised Contrastive Domain Adaptation for Semantic Segmentation [75.37470873764855]
We introduce contrastive learning for feature alignment in cross-domain adaptation.
The proposed approach consistently outperforms state-of-the-art methods for domain adaptation.
It achieves 60.2% mIoU on the Cityscapes dataset.
arXiv Detail & Related papers (2022-04-18T16:50:46Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Optimal Latent Vector Alignment for Unsupervised Domain Adaptation in
Medical Image Segmentation [1.2183405753834562]
OLVA is a lightweight unsupervised domain adaptation method based on a Variational Auto-Encoder (VAE) and Optimal Transport (OT) theory.
Our results show remarkable improvements with an additional margin of 12.5% dice score over concurrent generative training approaches.
arXiv Detail & Related papers (2021-06-15T14:41:09Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
This paper studies how much it can help address domain shifts if we further have a few target samples labeled.
To explore the full potential of landmarks, we incorporate a prototypical alignment (PA) module which calculates a target prototype for each class from the landmarks.
Specifically, we severely perturb the labeled images, making PA non-trivial to achieve and thus promoting model generalizability.
arXiv Detail & Related papers (2021-04-19T08:46:08Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
Existing techniques to adapt semantic segmentation networks across the source and target domains within deep convolutional neural networks (CNNs) do not consider an inter-class variation within the target domain itself or estimated category.
We introduce a learnable clustering module, and a novel domain adaptation framework called cross-domain grouping and alignment.
Our method consistently boosts the adaptation performance in semantic segmentation, outperforming the state-of-the-arts on various domain adaptation settings.
arXiv Detail & Related papers (2020-12-15T11:36:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.