The Local Landscape of Phase Retrieval Under Limited Samples
- URL: http://arxiv.org/abs/2311.15221v2
- Date: Fri, 11 Oct 2024 21:34:57 GMT
- Title: The Local Landscape of Phase Retrieval Under Limited Samples
- Authors: Kaizhao Liu, Zihao Wang, Lei Wu,
- Abstract summary: We aim to ascertain the minimal sample size required to guarantee a benign local landscape surrounding global minima in high dimensions.
We first explore the local convexity of whenn=odlog d).
- Score: 12.366532279123359
- License:
- Abstract: In this paper, we present a fine-grained analysis of the local landscape of phase retrieval under the regime of limited samples. Specifically, we aim to ascertain the minimal sample size required to guarantee a benign local landscape surrounding global minima in high dimensions. Let $n$ and $d$ denote the sample size and input dimension, respectively. We first explore the local convexity and establish that when $n=o(d\log d)$, for almost every fixed point in the local ball, the Hessian matrix has negative eigenvalues, provided $d$ is sufficiently large. % Consequently, the local landscape is highly non-convex. We next consider the one-point convexity and show that, as long as $n=\omega(d)$, with high probability, the landscape is one-point strongly convex in the local annulus: $\{w\in\mathbb{R}^d: o_d(1)\leqslant \|w-w^*\|\leqslant c\}$, where $w^*$ is the ground truth and $c$ is an absolute constant. This implies that gradient descent, initialized from any point in this domain, can converge to an $o_d(1)$-loss solution exponentially fast. Furthermore, we show that when $n=o(d\log d)$, there is a radius of $\widetilde\Theta\left(\sqrt{1/d}\right)$ such that one-point convexity breaks down in the corresponding smaller local ball. This indicates an impossibility of establishing a convergence to the exact $w^*$ for gradient descent under limited samples by relying solely on one-point convexity.
Related papers
- Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
Previous private estimators on distributions over $mathRd suffer from a curse of dimensionality.
We present an algorithm whose sample complexity has improved dependence on dimension.
arXiv Detail & Related papers (2024-11-01T17:59:53Z) - Multiple-policy Evaluation via Density Estimation [30.914344538340412]
We propose an algorithm named $mathrmCAESAR$ for this problem.
Up to low order and logarithmic terms $mathrmCAESAR$ achieves a sample complexity $tildeOleft(fracH4epsilon2sum_h=1Hmax_kin[K]sum_s,afrac(d_hpik(s,a))2mu*_h(s,a)right)$, where $dpi
arXiv Detail & Related papers (2024-03-29T23:55:25Z) - Optimal and Efficient Algorithms for Decentralized Online Convex Optimization [51.00357162913229]
Decentralized online convex optimization (D-OCO) is designed to minimize a sequence of global loss functions using only local computations and communications.
We develop a novel D-OCO algorithm that can reduce the regret bounds for convex and strongly convex functions to $tildeO(nrho-1/4sqrtT)$ and $tildeO(nrho-1/2log T)$.
Our analysis reveals that the projection-free variant can achieve $O(nT3/4)$ and $O(n
arXiv Detail & Related papers (2024-02-14T13:44:16Z) - Detection of Dense Subhypergraphs by Low-Degree Polynomials [72.4451045270967]
Detection of a planted dense subgraph in a random graph is a fundamental statistical and computational problem.
We consider detecting the presence of a planted $Gr(ngamma, n-alpha)$ subhypergraph in a $Gr(n, n-beta) hypergraph.
Our results are already new in the graph case $r=2$, as we consider the subtle log-density regime where hardness based on average-case reductions is not known.
arXiv Detail & Related papers (2023-04-17T10:38:08Z) - Learning linear dynamical systems under convex constraints [4.4351901934764975]
We consider the problem of identification of linear dynamical systems from $T$ samples of a single trajectory.
$A*$ can be reliably estimated for values $T$ smaller than what is needed for unconstrained setting.
arXiv Detail & Related papers (2023-03-27T11:49:40Z) - A first-order primal-dual method with adaptivity to local smoothness [64.62056765216386]
We consider the problem of finding a saddle point for the convex-concave objective $min_x max_y f(x) + langle Ax, yrangle - g*(y)$, where $f$ is a convex function with locally Lipschitz gradient and $g$ is convex and possibly non-smooth.
We propose an adaptive version of the Condat-Vu algorithm, which alternates between primal gradient steps and dual steps.
arXiv Detail & Related papers (2021-10-28T14:19:30Z) - Faster Perturbed Stochastic Gradient Methods for Finding Local Minima [92.99933928528797]
We propose tttPullback, a faster perturbed gradient framework for finding local minima.
We show that Pullback with gradient estimators such as SARAH/SP and STORM can find $(epsilon, epsilon_H)$approximate local minima within $tilde O(epsilon-3 + H-6)$.
The core idea of our framework is a step-size pullback'' scheme to control the average movement of the gradient evaluations.
arXiv Detail & Related papers (2021-10-25T07:20:05Z) - Nonasymptotic one-and two-sample tests in high dimension with unknown
covariance structure [0.0]
We consider the problem of testing if $mu is $eta-close to zero, i.e. $|mu| leq eta against $|mu| geq (eta + delta)$.
The aim of this paper is to obtain nonasymptotic upper and lower bounds on the minimal separation distancedelta$ such that we can control both the Type I and Type II errors at a given level.
arXiv Detail & Related papers (2021-09-01T06:22:53Z) - Non-Parametric Estimation of Manifolds from Noisy Data [1.0152838128195467]
We consider the problem of estimating a $d$ dimensional sub-manifold of $mathbbRD$ from a finite set of noisy samples.
We show that the estimation yields rates of convergence of $n-frack2k + d$ for the point estimation and $n-frack-12k + d$ for the estimation of tangent space.
arXiv Detail & Related papers (2021-05-11T02:29:33Z) - Sparse sketches with small inversion bias [79.77110958547695]
Inversion bias arises when averaging estimates of quantities that depend on the inverse covariance.
We develop a framework for analyzing inversion bias, based on our proposed concept of an $(epsilon,delta)$-unbiased estimator for random matrices.
We show that when the sketching matrix $S$ is dense and has i.i.d. sub-gaussian entries, the estimator $(epsilon,delta)$-unbiased for $(Atop A)-1$ with a sketch of size $m=O(d+sqrt d/
arXiv Detail & Related papers (2020-11-21T01:33:15Z) - Efficient Statistics for Sparse Graphical Models from Truncated Samples [19.205541380535397]
We focus on two fundamental and classical problems: (i) inference of sparse Gaussian graphical models and (ii) support recovery of sparse linear models.
For sparse linear regression, suppose samples $(bf x,y)$ are generated where $y = bf xtopOmega* + mathcalN(0,1)$ and $(bf x, y)$ is seen only if $y$ belongs to a truncation set $S subseteq mathbbRd$.
arXiv Detail & Related papers (2020-06-17T09:21:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.