論文の概要: CalibFormer: A Transformer-based Automatic LiDAR-Camera Calibration Network
- arxiv url: http://arxiv.org/abs/2311.15241v2
- Date: Sun, 17 Mar 2024 05:30:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 03:02:46.000738
- Title: CalibFormer: A Transformer-based Automatic LiDAR-Camera Calibration Network
- Title(参考訳): CalibFormer: トランスフォーマーによるLiDARカメラ自動校正ネットワーク
- Authors: Yuxuan Xiao, Yao Li, Chengzhen Meng, Xingchen Li, Jianmin Ji, Yanyong Zhang,
- Abstract要約: CalibFormerは自動LiDARカメラキャリブレーションのためのエンドツーエンドネットワークである。
高精細度表現を実現するために、複数のカメラ層とLiDAR画像層を集約する。
平均翻訳誤差は0.8751 Mathrmcm$, 平均回転誤差は0.0562 circ$であった。
- 参考スコア(独自算出の注目度): 11.602943913324653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fusion of LiDARs and cameras has been increasingly adopted in autonomous driving for perception tasks. The performance of such fusion-based algorithms largely depends on the accuracy of sensor calibration, which is challenging due to the difficulty of identifying common features across different data modalities. Previously, many calibration methods involved specific targets and/or manual intervention, which has proven to be cumbersome and costly. Learning-based online calibration methods have been proposed, but their performance is barely satisfactory in most cases. These methods usually suffer from issues such as sparse feature maps, unreliable cross-modality association, inaccurate calibration parameter regression, etc. In this paper, to address these issues, we propose CalibFormer, an end-to-end network for automatic LiDAR-camera calibration. We aggregate multiple layers of camera and LiDAR image features to achieve high-resolution representations. A multi-head correlation module is utilized to identify correlations between features more accurately. Lastly, we employ transformer architectures to estimate accurate calibration parameters from the correlation information. Our method achieved a mean translation error of $0.8751 \mathrm{cm}$ and a mean rotation error of $0.0562 ^{\circ}$ on the KITTI dataset, surpassing existing state-of-the-art methods and demonstrating strong robustness, accuracy, and generalization capabilities.
- Abstract(参考訳): LiDARとカメラの融合は、認識タスクの自動運転にますます採用されている。
このような融合に基づくアルゴリズムの性能は、センサーキャリブレーションの精度に大きく依存する。
以前は、多くの校正手法には特定の目標や手動による介入が含まれていたが、これは煩雑でコストがかかることが証明された。
学習ベースのオンライン校正手法が提案されているが、ほとんどの場合、その性能はほとんど満足していない。
これらの手法は通常、スパース特徴写像、信頼できない相互モダリティアソシエーション、不正確な校正パラメータ回帰などの問題に悩まされる。
本稿では,これらの問題に対処するために,自動LiDARカメラキャリブレーションのためのエンドツーエンドネットワークCalibFormerを提案する。
高精細度表現を実現するために、複数のカメラ層とLiDAR画像層を集約する。
マルチヘッド相関モジュールを用いて特徴間の相関をより正確に識別する。
最後に、相関情報から正確な校正パラメータを推定するためにトランスフォーマーアーキテクチャを用いる。
提案手法は, KITTIデータセット上で平均翻訳誤差が0.8751 \mathrm{cm}$, 平均回転誤差が0.0562 ^{\circ}$となり, 既存の最先端手法を超越し, 強靭性, 精度, 一般化能力を示した。
関連論文リスト
- UniCal: Unified Neural Sensor Calibration [32.7372115947273]
自動運転車(SDV)には、LiDARとカメラの正確な校正が必要である。
従来のキャリブレーション手法では、制御され構造化されたシーンでキャプチャされたフィデューシャルを利用し、処理を最適化するために対応を計算する。
我々は、複数のLiDARとカメラを備えたSDVを強制的に校正する統合フレームワークUniCalを提案する。
論文 参考訳(メタデータ) (2024-09-27T17:56:04Z) - Kalib: Markerless Hand-Eye Calibration with Keypoint Tracking [52.4190876409222]
ハンドアイキャリブレーションでは、カメラとロボット間の変換を推定する。
ディープラーニングの最近の進歩は、マーカーレス技術を提供するが、それらは課題を提示している。
自動的かつ普遍的なマーカーレスハンドアイキャリブレーションパイプラインであるKalibを提案する。
論文 参考訳(メタデータ) (2024-08-20T06:03:40Z) - YOCO: You Only Calibrate Once for Accurate Extrinsic Parameter in LiDAR-Camera Systems [0.5999777817331317]
カメラとLiDARからなるマルチセンサー融合システムでは、正確な外部キャリブレーションがシステムの長期的な安定性と環境の正確な認識に寄与する。
本稿では,LiDARカメラシステムにおいて,対応点登録の必要性を回避するための完全自動外部校正手法を提案する。
論文 参考訳(メタデータ) (2024-07-25T13:44:49Z) - A re-calibration method for object detection with multi-modal alignment bias in autonomous driving [7.601405124830806]
自律走行における多モード物体検出は、異なるセンサからの補完情報を融合させることにより、大きなブレークスルーを達成した。
実際には、キャリブレーション行列は車両が工場を出る際に固定されるが、振動、バンプ、データラグはキャリブレーションバイアスを引き起こす可能性がある。
我々は,SOTA検出方式EPNet++の実験を行い,キャリブレーションの偏りをわずかに示し,性能を著しく低下させることを示した。
論文 参考訳(メタデータ) (2024-05-27T05:46:37Z) - EdgeCalib: Multi-Frame Weighted Edge Features for Automatic Targetless
LiDAR-Camera Calibration [15.057994140880373]
実世界のシナリオにおけるLiDARとカメラの自動校正のためのエッジベースのアプローチを提案する。
エッジ機能は、様々な環境で広く使われているが、画像と点雲の両方に並び、外在パラメータを決定する。
その結果, 最先端回転精度は0.086deg, 翻訳精度は0.977cmであり, 既存のエッジベースキャリブレーション法よりも精度とロバスト性が高いことがわかった。
論文 参考訳(メタデータ) (2023-10-25T13:27:56Z) - TrajMatch: Towards Automatic Spatio-temporal Calibration for Roadside
LiDARs through Trajectory Matching [12.980324010888664]
我々は,道路沿いのLiDARを時間と空間の両方で自動調整できる最初のシステムであるTrajMatchを提案する。
実験の結果,TrajMatchは空間キャリブレーション誤差が10cm未満であり,時間キャリブレーション誤差が1.5ms未満であることがわかった。
論文 参考訳(メタデータ) (2023-02-04T12:27:01Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
本論文では,LiDAR,単眼,ステレオカメラを含む任意のセンサのパラメータを校正する手法を提案する。
提案手法は、通常、車両のセットアップで見られるように、非常に異なる解像度とポーズのデバイスを扱うことができる。
論文 参考訳(メタデータ) (2021-01-12T12:02:26Z) - Uncertainty Quantification and Deep Ensembles [79.4957965474334]
ディープアンサンブルが必ずしもキャリブレーション特性の改善につながるとは限らないことを示す。
そこで本研究では,混成正規化などの現代的な手法と併用して標準アンサンブル法を用いることで,キャリブレーションの少ないモデルが得られることを示す。
このテキストは、データが不足しているときにディープラーニングを活用するために、最も単純で一般的な3つのアプローチの相互作用を調べる。
論文 参考訳(メタデータ) (2020-07-17T07:32:24Z) - Self-Calibration Supported Robust Projective Structure-from-Motion [80.15392629310507]
本稿では,自己校正制約によってマッチングプロセスが支持される統合されたStructure-from-Motion (SfM)法を提案する。
これらの制約を利用して,ロバストなマルチビューマッチングと正確なカメラキャリブレーションを示す実験結果を示す。
論文 参考訳(メタデータ) (2020-07-04T08:47:10Z) - Intra Order-preserving Functions for Calibration of Multi-Class Neural
Networks [54.23874144090228]
一般的なアプローチは、元のネットワークの出力をキャリブレーションされた信頼スコアに変換する、ポストホックキャリブレーション関数を学ぶことである。
以前のポストホックキャリブレーション技術は単純なキャリブレーション機能でしか機能しない。
本稿では,順序保存関数のクラスを表すニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-15T12:57:21Z) - Calibrating Deep Neural Networks using Focal Loss [77.92765139898906]
ミススキャリブレーション(Miscalibration)は、モデルの信頼性と正しさのミスマッチである。
焦点損失は、既に十分に校正されたモデルを学ぶことができることを示す。
ほぼすべてのケースにおいて精度を損なうことなく,最先端のキャリブレーションを達成できることを示す。
論文 参考訳(メタデータ) (2020-02-21T17:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。