NeuRAD: Neural Rendering for Autonomous Driving
- URL: http://arxiv.org/abs/2311.15260v3
- Date: Thu, 18 Apr 2024 12:44:56 GMT
- Title: NeuRAD: Neural Rendering for Autonomous Driving
- Authors: Adam Tonderski, Carl Lindström, Georg Hess, William Ljungbergh, Lennart Svensson, Christoffer Petersson,
- Abstract summary: Neural radiance fields (NeRFs) have gained popularity in the autonomous driving (AD) community.
Recent methods show NeRFs' potential for closed-loop simulation, enabling testing of AD systems.
We propose NeuRAD, a robust novel view synthesis method tailored to dynamic AD data.
- Score: 6.38985543723149
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural radiance fields (NeRFs) have gained popularity in the autonomous driving (AD) community. Recent methods show NeRFs' potential for closed-loop simulation, enabling testing of AD systems, and as an advanced training data augmentation technique. However, existing methods often require long training times, dense semantic supervision, or lack generalizability. This, in turn, hinders the application of NeRFs for AD at scale. In this paper, we propose NeuRAD, a robust novel view synthesis method tailored to dynamic AD data. Our method features simple network design, extensive sensor modeling for both camera and lidar -- including rolling shutter, beam divergence and ray dropping -- and is applicable to multiple datasets out of the box. We verify its performance on five popular AD datasets, achieving state-of-the-art performance across the board. To encourage further development, we will openly release the NeuRAD source code. See https://github.com/georghess/NeuRAD .
Related papers
- Data-Independent Operator: A Training-Free Artifact Representation
Extractor for Generalizable Deepfake Detection [105.9932053078449]
In this work, we show that, on the contrary, the small and training-free filter is sufficient to capture more general artifact representations.
Due to its unbias towards both the training and test sources, we define it as Data-Independent Operator (DIO) to achieve appealing improvements on unseen sources.
Our detector achieves a remarkable improvement of $13.3%$, establishing a new state-of-the-art performance.
arXiv Detail & Related papers (2024-03-11T15:22:28Z) - NeRFmentation: NeRF-based Augmentation for Monocular Depth Estimation [44.22677259411607]
We propose a NeRF-based data augmentation pipeline to introduce synthetic data with more diverse viewing directions into training datasets.
We apply our technique in conjunction with three state-of-the-art MDE architectures on the popular autonomous driving dataset, KITTI.
arXiv Detail & Related papers (2024-01-08T09:50:54Z) - SimpleNeRF: Regularizing Sparse Input Neural Radiance Fields with
Simpler Solutions [6.9980855647933655]
supervising the depth estimated by the NeRF helps train it effectively with fewer views.
We design augmented models that encourage simpler solutions by exploring the role of positional encoding and view-dependent radiance.
We achieve state-of-the-art view-synthesis performance on two popular datasets by employing the above regularizations.
arXiv Detail & Related papers (2023-09-07T18:02:57Z) - DReg-NeRF: Deep Registration for Neural Radiance Fields [66.69049158826677]
We propose DReg-NeRF to solve the NeRF registration problem on object-centric annotated scenes without human intervention.
Our proposed method beats the SOTA point cloud registration methods by a large margin.
arXiv Detail & Related papers (2023-08-18T08:37:49Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLoc is a novel unified neural modeling approach for localization with multi-sensor input in all weather conditions.
Our method is extensively evaluated on Oxford Radar RobotCar, ApolloSouthBay and Perth-WA datasets.
arXiv Detail & Related papers (2023-07-03T04:10:55Z) - HUM3DIL: Semi-supervised Multi-modal 3D Human Pose Estimation for
Autonomous Driving [95.42203932627102]
3D human pose estimation is an emerging technology, which can enable the autonomous vehicle to perceive and understand the subtle and complex behaviors of pedestrians.
Our method efficiently makes use of these complementary signals, in a semi-supervised fashion and outperforms existing methods with a large margin.
Specifically, we embed LiDAR points into pixel-aligned multi-modal features, which we pass through a sequence of Transformer refinement stages.
arXiv Detail & Related papers (2022-12-15T11:15:14Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
We present a new training scheme that adds noise at multiple stages of an existing neural architecture while simultaneously learning to be robust to this added noise.
This architecture, which we call a Self-Denoising Neural Network (SDNN), can be applied easily to most modern convolutional neural architectures.
arXiv Detail & Related papers (2021-10-26T03:28:36Z) - Efficient Low-Latency Dynamic Licensing for Deep Neural Network
Deployment on Edge Devices [0.0]
We propose an architecture to solve deploying and processing deep neural networks on edge-devices.
Adopting this architecture allows low-latency model updates on devices.
arXiv Detail & Related papers (2021-02-24T09:36:39Z) - Temporal Pulses Driven Spiking Neural Network for Fast Object
Recognition in Autonomous Driving [65.36115045035903]
We propose an approach to address the object recognition problem directly with raw temporal pulses utilizing the spiking neural network (SNN)
Being evaluated on various datasets, our proposed method has shown comparable performance as the state-of-the-art methods, while achieving remarkable time efficiency.
arXiv Detail & Related papers (2020-01-24T22:58:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.