NeuRadar: Neural Radiance Fields for Automotive Radar Point Clouds
- URL: http://arxiv.org/abs/2504.00859v2
- Date: Wed, 09 Apr 2025 12:30:13 GMT
- Title: NeuRadar: Neural Radiance Fields for Automotive Radar Point Clouds
- Authors: Mahan Rafidashti, Ji Lan, Maryam Fatemi, Junsheng Fu, Lars Hammarstrand, Lennart Svensson,
- Abstract summary: We present NeuRadar, a NeRF-based model that jointly generates radar point clouds, camera images, and lidar point clouds.<n>To encourage further development of radar NeRFs, we release the source code for NeuRadar.
- Score: 4.000915046854788
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Radar is an important sensor for autonomous driving (AD) systems due to its robustness to adverse weather and different lighting conditions. Novel view synthesis using neural radiance fields (NeRFs) has recently received considerable attention in AD due to its potential to enable efficient testing and validation but remains unexplored for radar point clouds. In this paper, we present NeuRadar, a NeRF-based model that jointly generates radar point clouds, camera images, and lidar point clouds. We explore set-based object detection methods such as DETR, and propose an encoder-based solution grounded in the NeRF geometry for improved generalizability. We propose both a deterministic and a probabilistic point cloud representation to accurately model the radar behavior, with the latter being able to capture radar's stochastic behavior. We achieve realistic reconstruction results for two automotive datasets, establishing a baseline for NeRF-based radar point cloud simulation models. In addition, we release radar data for ZOD's Sequences and Drives to enable further research in this field. To encourage further development of radar NeRFs, we release the source code for NeuRadar.
Related papers
- Simulating Automotive Radar with Lidar and Camera Inputs [14.196071603770251]
Low-cost millimeter automotive radar has received more and more attention due to its ability to handle adverse weather and lighting conditions in autonomous driving.<n>We report a new method that is able to simulate 4D millimeter wave radar signals using camera image, light detection and ranging (lidar) point cloud, and ego-velocity.
arXiv Detail & Related papers (2025-03-11T05:59:43Z) - SparseRadNet: Sparse Perception Neural Network on Subsampled Radar Data [5.344444942640663]
Radar raw data often contains excessive noise, whereas radar point clouds retain only limited information.
We introduce an adaptive subsampling method together with a tailored network architecture that exploits the sparsity patterns.
Experiments on the RADIal dataset show that our SparseRadNet exceeds state-of-the-art (SOTA) performance in object detection and achieves close to SOTA accuracy in freespace segmentation.
arXiv Detail & Related papers (2024-06-15T11:26:10Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - Diffusion-Based Point Cloud Super-Resolution for mmWave Radar Data [8.552647576661174]
millimeter-wave radar sensor maintains stable performance under adverse environmental conditions.
Radar point clouds are relatively sparse and contain massive ghost points.
We propose a novel point cloud super-resolution approach for 3D mmWave radar data, named Radar-diffusion.
arXiv Detail & Related papers (2024-04-09T04:41:05Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
Radar-centric data sets do not get a lot of attention in the development of deep learning techniques for radar perception.
We propose a transformers-based model, named RadarFormer, that utilizes state-of-the-art developments in vision deep learning.
Our model also introduces a channel-chirp-time merging module that reduces the size and complexity of our models by more than 10 times without compromising accuracy.
arXiv Detail & Related papers (2023-04-17T17:07:35Z) - NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for
Autonomous Driving [57.03126447713602]
We present a deep neural network (DNN) that detects dynamic obstacles and drivable free space using automotive RADAR sensors.
The network runs faster than real time on an embedded GPU and shows good generalization across geographic regions.
arXiv Detail & Related papers (2022-09-29T01:30:34Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
We present LiRaNet, a novel end-to-end trajectory prediction method which utilizes radar sensor information along with widely used lidar and high definition (HD) maps.
automotive radar provides rich, complementary information, allowing for longer range vehicle detection as well as instantaneous velocity measurements.
arXiv Detail & Related papers (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.