Revealing Cortical Layers In Histological Brain Images With
Self-Supervised Graph Convolutional Networks Applied To Cell-Graphs
- URL: http://arxiv.org/abs/2311.15262v1
- Date: Sun, 26 Nov 2023 10:33:36 GMT
- Title: Revealing Cortical Layers In Histological Brain Images With
Self-Supervised Graph Convolutional Networks Applied To Cell-Graphs
- Authors: Valentina Vadori, Antonella Peruffo, Jean-Marie Gra\"ic, Giulia
Vadori, Livio Finos, Enrico Grisan
- Abstract summary: We introduce a self-supervised approach to detect layers in 2D Nissl-stained histological slices of the cerebral cortex.
A self-supervised graph convolutional network generates cell embeddings that encode morphological and structural traits of the cellular environment.
- Score: 0.20971479389679332
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Identifying cerebral cortex layers is crucial for comparative studies of the
cytoarchitecture aiming at providing insights into the relations between brain
structure and function across species. The absence of extensive annotated
datasets typically limits the adoption of machine learning approaches, leading
to the manual delineation of cortical layers by neuroanatomists. We introduce a
self-supervised approach to detect layers in 2D Nissl-stained histological
slices of the cerebral cortex. It starts with the segmentation of individual
cells and the creation of an attributed cell-graph. A self-supervised graph
convolutional network generates cell embeddings that encode morphological and
structural traits of the cellular environment and are exploited by a community
detection algorithm for the final layering. Our method, the first
self-supervised of its kind with no spatial transcriptomics data involved,
holds the potential to accelerate cytoarchitecture analyses, sidestepping
annotation needs and advancing cross-species investigation.
Related papers
- Cell Graph Transformer for Nuclei Classification [78.47566396839628]
We develop a cell graph transformer (CGT) that treats nodes and edges as input tokens to enable learnable adjacency and information exchange among all nodes.
Poorly features can lead to noisy self-attention scores and inferior convergence.
We propose a novel topology-aware pretraining method that leverages a graph convolutional network (GCN) to learn a feature extractor.
arXiv Detail & Related papers (2024-02-20T12:01:30Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - NCIS: Deep Color Gradient Maps Regression and Three-Class Pixel
Classification for Enhanced Neuronal Cell Instance Segmentation in
Nissl-Stained Histological Images [0.5273938705774914]
This paper presents an end-to-end framework to automatically segment single neuronal cells in Nissl-stained histological images of the brain.
A U-Net-like architecture with an EfficientNet as the encoder and two decoding branches is exploited to regress four gradient color maps and classify pixels into contours between touching cells, cell bodies, or background.
The method was tested on images of the cerebral cortex and cerebellum, outperforming other recent deep-learning-based approaches for the instance segmentation of cells.
arXiv Detail & Related papers (2023-06-27T20:22:04Z) - Structure Embedded Nucleus Classification for Histopathology Images [51.02953253067348]
Most neural network based methods are affected by the local receptive field of convolutions.
We propose a novel polygon-structure feature learning mechanism that transforms a nucleus contour into a sequence of points sampled in order.
Next, we convert a histopathology image into a graph structure with nuclei as nodes, and build a graph neural network to embed the spatial distribution of nuclei into their representations.
arXiv Detail & Related papers (2023-02-22T14:52:06Z) - Graph Neural Operators for Classification of Spatial Transcriptomics
Data [1.408706290287121]
We propose a study incorporating various graph neural network approaches to validate the efficacy of applying neural operators towards prediction of brain regions in mouse brain tissue samples.
We were able to achieve an F1 score of nearly 72% for the graph neural operator approach which outperformed all baseline and other graph network approaches.
arXiv Detail & Related papers (2023-02-01T18:32:06Z) - Brain Cortical Functional Gradients Predict Cortical Folding Patterns
via Attention Mesh Convolution [51.333918985340425]
We develop a novel attention mesh convolution model to predict cortical gyro-sulcal segmentation maps on individual brains.
Experiments show that the prediction performance via our model outperforms other state-of-the-art models.
arXiv Detail & Related papers (2022-05-21T14:08:53Z) - Neuroplastic graph attention networks for nuclei segmentation in
histopathology images [17.30043617044508]
We propose a novel architecture for semantic segmentation of cell nuclei.
The architecture is comprised of a novel neuroplastic graph attention network.
In experimental evaluation, our framework outperforms ensembles of state-of-the-art neural networks.
arXiv Detail & Related papers (2022-01-10T22:19:14Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - Contrastive Representation Learning for Whole Brain Cytoarchitectonic
Mapping in Histological Human Brain Sections [0.4588028371034407]
We propose a contrastive learning objective for encoding microscopic image patches into robust microstructural features.
We show that a model pre-trained using this learning task outperforms a model trained from scratch, as well as a model pre-trained on a recently proposed auxiliary task.
arXiv Detail & Related papers (2020-11-25T16:44:23Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
We propose that the immature prefrontal cortex (PFC) use its primary functionality of detecting hierarchical patterns in temporal signals.
Our hypothesis is that the PFC detects the hierarchical structure in temporal sequences in the form of ordinal patterns and use them to index information hierarchically in different parts of the brain.
By doing so, it gives the tools to the language-ready brain for manipulating abstract knowledge and planning temporally ordered information.
arXiv Detail & Related papers (2020-05-22T14:29:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.