論文の概要: Adversarial Purification of Information Masking
- arxiv url: http://arxiv.org/abs/2311.15339v1
- Date: Sun, 26 Nov 2023 15:50:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 18:07:41.907204
- Title: Adversarial Purification of Information Masking
- Title(参考訳): 情報マスキングの敵意的浄化
- Authors: Sitong Liu, Zhichao Lian, Shuangquan Zhang, Liang Xiao
- Abstract要約: アドリアックは、ニューラルネットワークを騙すイメージに対して、極小で知覚不能な摂動を発生させる。
これらに対抗して、敵の入力サンプルをクリーンな出力画像に変換し、敵の攻撃を防ごうとする。
本稿では,情報マスク浄化 (IMPure) と呼ばれる新しい対向的浄化手法を提案し,対向的摂動を広範囲に排除する。
- 参考スコア(独自算出の注目度): 8.253834429336656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial attacks meticulously generate minuscule, imperceptible
perturbations to images to deceive neural networks. Counteracting these,
adversarial purification methods seek to transform adversarial input samples
into clean output images to defend against adversarial attacks. Nonetheless,
extent generative models fail to effectively eliminate adversarial
perturbations, yielding less-than-ideal purification results. We emphasize the
potential threat of residual adversarial perturbations to target models,
quantitatively establishing a relationship between perturbation scale and
attack capability. Notably, the residual perturbations on the purified image
primarily stem from the same-position patch and similar patches of the
adversarial sample. We propose a novel adversarial purification approach named
Information Mask Purification (IMPure), aims to extensively eliminate
adversarial perturbations. To obtain an adversarial sample, we first mask part
of the patches information, then reconstruct the patches to resist adversarial
perturbations from the patches. We reconstruct all patches in parallel to
obtain a cohesive image. Then, in order to protect the purified samples against
potential similar regional perturbations, we simulate this risk by randomly
mixing the purified samples with the input samples before inputting them into
the feature extraction network. Finally, we establish a combined constraint of
pixel loss and perceptual loss to augment the model's reconstruction
adaptability. Extensive experiments on the ImageNet dataset with three
classifier models demonstrate that our approach achieves state-of-the-art
results against nine adversarial attack methods. Implementation code and
pre-trained weights can be accessed at
\textcolor{blue}{https://github.com/NoWindButRain/IMPure}.
- Abstract(参考訳): 敵対的攻撃は、ニューラルネットワークを騙すために画像に極小で知覚できない摂動を生成する。
これらに対抗して、敵の入力サンプルをクリーンな出力画像に変換し、敵の攻撃から守る。
それでも、ある程度の生成モデルは、敵の摂動を効果的に排除できず、理想的でない浄化結果をもたらす。
ターゲットモデルに対する残余の敵対的摂動の潜在的な脅威を強調し,摂動スケールと攻撃能力の関係を定量的に確立する。
特に、精製画像上の残留摂動は、主に、対向サンプルの同じ位置パッチと類似のパッチに由来する。
本稿では,情報マスク浄化 (IMPure) と呼ばれる新たな対外浄化手法を提案する。
逆方向のサンプルを得るために,まずパッチ情報の一部をマスクし,次にパッチを再構築して,パッチからの逆方向の摂動に抵抗する。
すべてのパッチを並列に再構築し,結束画像を得る。
そして, 類似する局所的摂動に対して精製試料を保護するため, 特徴抽出ネットワークに入力する前に, 精製試料と入力試料をランダムに混合することにより, このリスクをシミュレートする。
最後に,画素損失と知覚損失の組合せ制約を確立し,モデルの再構成適応性を高める。
3つの分類器モデルを用いたimagenetデータセットの広範囲な実験により,本手法は9つの攻撃手法に対して最先端の結果が得られることを示した。
実装コードと事前トレーニングされたウェイトは、 \textcolor{blue}{https://github.com/nowindbutrain/impure} でアクセスできる。
関連論文リスト
- Classifier Guidance Enhances Diffusion-based Adversarial Purification by Preserving Predictive Information [75.36597470578724]
敵の浄化は、敵の攻撃からニューラルネットワークを守るための有望なアプローチの1つである。
分類器決定境界から遠ざかって, 清浄するgUided Purification (COUP)アルゴリズムを提案する。
実験結果から, COUPは強力な攻撃法でより優れた対向的堅牢性が得られることが示された。
論文 参考訳(メタデータ) (2024-08-12T02:48:00Z) - Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
本稿では, 対向性, 可視性に優れた対向性例を生成できるASMA(Adversarial Semantic Mask Attack framework)を提案する。
具体的には, 局所的なセマンティック領域の摂動を抑制し, 良好なステルス性を実現する, 対向型セマンティックマスク生成モデルを提案する。
論文 参考訳(メタデータ) (2024-06-16T10:38:11Z) - Breaking Free: How to Hack Safety Guardrails in Black-Box Diffusion Models! [52.0855711767075]
EvoSeedは、フォトリアリスティックな自然対向サンプルを生成するための進化戦略に基づくアルゴリズムフレームワークである。
我々は,CMA-ESを用いて初期種ベクトルの探索を最適化し,条件付き拡散モデルで処理すると,自然逆数サンプルをモデルで誤分類する。
実験の結果, 生成した対向画像は画像品質が高く, 安全分類器を通過させることで有害なコンテンツを生成する懸念が高まっていることがわかった。
論文 参考訳(メタデータ) (2024-02-07T09:39:29Z) - LFAA: Crafting Transferable Targeted Adversarial Examples with
Low-Frequency Perturbations [25.929492841042666]
本稿では,トランスファー可能な対象対向例を生成するための新しい手法を提案する。
画像の高周波成分の摂動にディープニューラルネットワークの脆弱性を利用する。
提案手法は最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-10-31T04:54:55Z) - IRAD: Implicit Representation-driven Image Resampling against Adversarial Attacks [16.577595936609665]
本稿では,画像再サンプリングという,敵対的攻撃に対する新たなアプローチを提案する。
画像再サンプリングは、幾何学的変換によって指定されたシーンの再調整や再レンダリングの過程をシミュレートして、離散画像を新しい画像に変換する。
本手法は,クリーンな画像の精度を維持しつつ,多様な深層モデルの様々な攻撃に対する対角的堅牢性を著しく向上することを示す。
論文 参考訳(メタデータ) (2023-10-18T11:19:32Z) - Adversarial Pixel Restoration as a Pretext Task for Transferable
Perturbations [54.1807206010136]
トランスファー可能な敵攻撃は、事前訓練された代理モデルと既知のラベル空間から敵を最適化し、未知のブラックボックスモデルを騙す。
本稿では,効果的なサロゲートモデルをスクラッチからトレーニングするための自己教師型代替手段として,Adversarial Pixel Restorationを提案する。
我々のトレーニングアプローチは、敵の目標を通したオーバーフィッティングを減らすmin-maxの目標に基づいています。
論文 参考訳(メタデータ) (2022-07-18T17:59:58Z) - Guided Diffusion Model for Adversarial Purification [103.4596751105955]
敵攻撃は、様々なアルゴリズムやフレームワークでディープニューラルネットワーク(DNN)を妨害する。
本稿では,GDMP ( Guided diffusion model for purification) と呼ばれる新しい精製法を提案する。
様々なデータセットにわたる包括的実験において,提案したGDMPは,敵対的攻撃によって引き起こされた摂動を浅い範囲に減少させることを示した。
論文 参考訳(メタデータ) (2022-05-30T10:11:15Z) - Diffusion Models for Adversarial Purification [69.1882221038846]
対人浄化(Adrial purification)とは、生成モデルを用いて敵の摂動を除去する防衛方法の分類である。
そこで我々は,拡散モデルを用いたDiffPureを提案する。
提案手法は,現在の対人訓練および対人浄化方法よりも優れ,最先端の成果を達成する。
論文 参考訳(メタデータ) (2022-05-16T06:03:00Z) - Robust Face Verification via Disentangled Representations [20.393894616979402]
顔認証のための頑健なアルゴリズムを導入し、同一人物か否かを判定する。
我々は,学習中に生成モデルを,対向雑音を除去するテスト時間浄化装置の代わりに,オンライン増強法として利用する。
逆行訓練と組み合わせることで,提案手法は弱内部解法と収束し,ホワイトボックスの物理的攻撃に対する評価において,最先端の工法よりもクリーンで堅牢な精度を有することを示す。
論文 参考訳(メタデータ) (2020-06-05T19:17:02Z) - Detecting Patch Adversarial Attacks with Image Residuals [9.169947558498535]
識別器は、クリーンサンプルと逆サンプルを区別するために訓練される。
得られた残基が敵攻撃のデジタル指紋として機能することを示す。
その結果,提案手法は従来見つからなかった,より強力な攻撃に対して一般化可能であることがわかった。
論文 参考訳(メタデータ) (2020-02-28T01:28:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。