EucliDreamer: Fast and High-Quality Texturing for 3D Models with Stable Diffusion Depth
- URL: http://arxiv.org/abs/2311.15573v2
- Date: Thu, 14 Mar 2024 03:23:59 GMT
- Title: EucliDreamer: Fast and High-Quality Texturing for 3D Models with Stable Diffusion Depth
- Authors: Cindy Le, Congrui Hetang, Chendi Lin, Ang Cao, Yihui He,
- Abstract summary: We present a novel method to generate textures for 3D models given text prompts and 3D meshes.
Additional depth information is taken into account to perform the Score Distillation Sampling (SDS) process.
- Score: 5.158983929861116
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a novel method to generate textures for 3D models given text prompts and 3D meshes. Additional depth information is taken into account to perform the Score Distillation Sampling (SDS) process with depth conditional Stable Diffusion. We ran our model over the open-source dataset Objaverse and conducted a user study to compare the results with those of various 3D texturing methods. We have shown that our model can generate more satisfactory results and produce various art styles for the same object. In addition, we achieved faster time when generating textures of comparable quality. We also conduct thorough ablation studies of how different factors may affect generation quality, including sampling steps, guidance scale, negative prompts, data augmentation, elevation range, and alternatives to SDS.
Related papers
- TexGen: Text-Guided 3D Texture Generation with Multi-view Sampling and Resampling [37.67373829836975]
We present TexGen, a novel multi-view sampling and resampling framework for texture generation.
Our proposed method produces significantly better texture quality for diverse 3D objects with a high degree of view consistency.
Our proposed texture generation technique can also be applied to texture editing while preserving the original identity.
arXiv Detail & Related papers (2024-08-02T14:24:40Z) - VividDreamer: Towards High-Fidelity and Efficient Text-to-3D Generation [69.68568248073747]
We propose Pose-dependent Consistency Distillation Sampling (PCDS), a novel yet efficient objective for diffusion-based 3D generation tasks.
PCDS builds the pose-dependent consistency function within diffusion trajectories, allowing to approximate true gradients through minimal sampling steps.
For efficient generation, we propose a coarse-to-fine optimization strategy, which first utilizes 1-step PCDS to create the basic structure of 3D objects, and then gradually increases PCDS steps to generate fine-grained details.
arXiv Detail & Related papers (2024-06-21T08:21:52Z) - EucliDreamer: Fast and High-Quality Texturing for 3D Models with Depth-Conditioned Stable Diffusion [5.158983929861116]
We present EucliDreamer, a simple and effective method to generate textures for 3D models given text and prompts.
The texture is parametized as an implicit function on the 3D surface, which is optimized with the Score Distillation Sampling (SDS) process and differentiable rendering.
arXiv Detail & Related papers (2024-04-16T04:44:16Z) - Text-Driven Diverse Facial Texture Generation via Progressive Latent-Space Refinement [34.00893761125383]
We propose a progressive latent space refinement approach to bootstrap from 3D Morphable Models (3DMMs)-based texture maps generated from facial images.
Our method outperforms existing 3D texture generation methods regarding photo-realistic quality, diversity, and efficiency.
arXiv Detail & Related papers (2024-04-15T08:04:44Z) - ViewDiff: 3D-Consistent Image Generation with Text-to-Image Models [65.22994156658918]
We present a method that learns to generate multi-view images in a single denoising process from real-world data.
We design an autoregressive generation that renders more 3D-consistent images at any viewpoint.
arXiv Detail & Related papers (2024-03-04T07:57:05Z) - A Quantitative Evaluation of Score Distillation Sampling Based
Text-to-3D [54.78611187426158]
We propose more objective quantitative evaluation metrics, which we cross-validate via human ratings, and show analysis of the failure cases of the SDS technique.
We demonstrate the effectiveness of this analysis by designing a novel computationally efficient baseline model.
arXiv Detail & Related papers (2024-02-29T00:54:09Z) - Instant3D: Fast Text-to-3D with Sparse-View Generation and Large
Reconstruction Model [68.98311213582949]
We propose Instant3D, a novel method that generates high-quality and diverse 3D assets from text prompts in a feed-forward manner.
Our method can generate diverse 3D assets of high visual quality within 20 seconds, two orders of magnitude faster than previous optimization-based methods.
arXiv Detail & Related papers (2023-11-10T18:03:44Z) - PaintHuman: Towards High-fidelity Text-to-3D Human Texturing via
Denoised Score Distillation [89.09455618184239]
Recent advances in text-to-3D human generation have been groundbreaking.
We propose a model called PaintHuman to address the challenges from two aspects.
We use the depth map as a guidance to ensure realistic semantically aligned textures.
arXiv Detail & Related papers (2023-10-14T00:37:16Z) - IT3D: Improved Text-to-3D Generation with Explicit View Synthesis [71.68595192524843]
This study presents a novel strategy that leverages explicitly synthesized multi-view images to address these issues.
Our approach involves the utilization of image-to-image pipelines, empowered by LDMs, to generate posed high-quality images.
For the incorporated discriminator, the synthesized multi-view images are considered real data, while the renderings of the optimized 3D models function as fake data.
arXiv Detail & Related papers (2023-08-22T14:39:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.