FreeAL: Towards Human-Free Active Learning in the Era of Large Language
Models
- URL: http://arxiv.org/abs/2311.15614v1
- Date: Mon, 27 Nov 2023 08:23:08 GMT
- Title: FreeAL: Towards Human-Free Active Learning in the Era of Large Language
Models
- Authors: Ruixuan Xiao, Yiwen Dong, Junbo Zhao, Runze Wu, Minmin Lin, Gang Chen,
Haobo Wang
- Abstract summary: FreeAL interactively distills and filters task-specific knowledge from large language models (LLMs)
Experiments on eight benchmark datasets demonstrate that FreeAL largely enhances the zero-shot performances for both SLM and LLM without any human supervision.
- Score: 21.88032973150393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collecting high-quality labeled data for model training is notoriously
time-consuming and labor-intensive for various NLP tasks. While copious
solutions, such as active learning for small language models (SLMs) and
prevalent in-context learning in the era of large language models (LLMs), have
been proposed and alleviate the labeling burden to some extent, their
performances are still subject to human intervention. It is still underexplored
how to reduce the annotation cost in the LLMs era. To bridge this, we
revolutionize traditional active learning and propose an innovative
collaborative learning framework FreeAL to interactively distill and filter the
task-specific knowledge from LLMs. During collaborative training, an LLM serves
as an active annotator inculcating its coarse-grained knowledge, while a
downstream SLM is incurred as a student to filter out high-quality in-context
samples to feedback LLM for the subsequent label refinery. Extensive
experiments on eight benchmark datasets demonstrate that FreeAL largely
enhances the zero-shot performances for both SLM and LLM without any human
supervision. The code is available at https://github.com/Justherozen/FreeAL .
Related papers
- zsLLMCode: An Effective Approach for Functional Code Embedding via LLM with Zero-Shot Learning [6.976968804436321]
Large language models (LLMs) have the capability of zero-shot learning, which does not require training or fine-tuning.
We propose zsLLMCode, a novel approach that generates functional code embeddings using LLMs.
arXiv Detail & Related papers (2024-09-23T01:03:15Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - SNAP: Unlearning Selective Knowledge in Large Language Models with Negative Instructions [37.172662930947446]
Instruction-following large language models (LLMs) inadvertently disclose personal or copyrighted information.
We propose SNAP, an innovative framework designed to selectively unlearn information.
We evaluate our framework on various NLP benchmarks and demonstrate that our approach retains the original LLM capabilities.
arXiv Detail & Related papers (2024-06-18T06:54:05Z) - Knowledgeable Agents by Offline Reinforcement Learning from Large Language Model Rollouts [10.929547354171723]
This paper introduces Knowledgeable Agents from Language Model Rollouts (KALM)
It extracts knowledge from large language models (LLMs) in the form of imaginary rollouts that can be easily learned by the agent through offline reinforcement learning methods.
It achieves a success rate of 46% in executing tasks with unseen goals, substantially surpassing the 26% success rate achieved by baseline methods.
arXiv Detail & Related papers (2024-04-14T13:19:40Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation.
How to effectively encode and understand videos in video-based dialogue systems remains to be solved.
We propose ST-LLM, an effective video-LLM baseline with spatial-temporal sequence modeling inside LLM.
arXiv Detail & Related papers (2024-03-30T10:11:26Z) - Continual Learning for Large Language Models: A Survey [95.79977915131145]
Large language models (LLMs) are not amenable to frequent re-training, due to high training costs arising from their massive scale.
This paper surveys recent works on continual learning for LLMs.
arXiv Detail & Related papers (2024-02-02T12:34:09Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
We propose LLMaAA, which takes large language models as annotators and puts them into an active learning loop to determine what to annotate efficiently.
We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction.
With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples.
arXiv Detail & Related papers (2023-10-30T14:54:15Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.