SEUF: Is Unlearning One Expert Enough for Mixture-of-Experts LLMs?
- URL: http://arxiv.org/abs/2411.18797v2
- Date: Mon, 30 Jun 2025 17:45:54 GMT
- Title: SEUF: Is Unlearning One Expert Enough for Mixture-of-Experts LLMs?
- Authors: Haomin Zhuang, Yihua Zhang, Kehan Guo, Jinghan Jia, Gaowen Liu, Sijia Liu, Xiangliang Zhang,
- Abstract summary: We propose a novel Selected-Expert Unlearning Framework (SEUF) for Mixture-of-Experts (MoE) LLMs.<n>Through expert attribution, unlearning is concentrated on the most actively engaged experts for the specified knowledge.<n>SEUF is compatible with various standard unlearning algorithms.
- Score: 35.237427998489785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in LLMs unlearning have shown remarkable success in removing unwanted data-model influences while preserving the model's utility for legitimate knowledge. Despite these strides, sparse Mixture-of-Experts (MoE) LLMs--a key subset of the LLM family--have remained unexplored in the context of unlearning. As MoE LLMs are celebrated for their exceptional performance, we ask:How can unlearning be performed effectively and efficiently on MoE LLMs? Our pilot study shows that the dynamic routing nature of MoE LLMs introduces unique challenges, leading to excessive forgetting, uncontrolled knowledge erasure and substantial utility drops when existing unlearning methods are applied. To address this, we propose a novel Selected-Expert Unlearning Framework (SEUF). Through expert attribution, unlearning is concentrated on the most actively engaged experts for the specified knowledge. Concurrently, an anchor loss is applied to the router to stabilize the active state of this targeted expert, ensuring focused and controlled unlearning. SEUF is compatible with various standard unlearning algorithms. Extensive experiments demonstrate that SEUF enhances both forget quality up to 5% and model utility by 35% on MoE LLMs across various benchmarks and LLM architectures (compared to standard unlearning algorithms), while only unlearning 0.06% of the model parameters.
Related papers
- Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - UIPE: Enhancing LLM Unlearning by Removing Knowledge Related to Forgetting Targets [41.0340052199534]
Large Language Models (LLMs) inevitably acquire harmful information during training on massive datasets.
Existing unlearning methods focus on forgetting target data while overlooking the crucial impact of logically related knowledge on the effectiveness of unlearning.
We propose Unlearning Improvement via Extrapolation (UIPE), a method that removes knowledge highly correlated with the forgetting targets.
arXiv Detail & Related papers (2025-03-06T18:40:00Z) - CL-MoE: Enhancing Multimodal Large Language Model with Dual Momentum Mixture-of-Experts for Continual Visual Question Answering [27.812611421754482]
We propose an MLLMs-based dual momentum Mixture-of-Experts (CL-MoE) framework for continual visual question answering (VQA)
We integrate MLLMs with continual learning to utilize the rich commonsense knowledge in LLMs.
Our method achieves state-of-the-art performance on 10 VQA tasks, proving the effectiveness of our approach.
arXiv Detail & Related papers (2025-03-01T09:25:23Z) - Agents Are All You Need for LLM Unlearning [9.934258340998047]
textttALU is a multi-agent, retrain-free, model-agnostic approach to LLM unlearning.<n>textttALU consistently stands out as the most robust inference-time LLM unlearning framework.<n>textttALU is assessed on up to 1000 unlearning targets, exceeding the evaluation scope of all previously proposed LLM unlearning methods.
arXiv Detail & Related papers (2025-02-01T11:45:44Z) - Does Unlearning Truly Unlearn? A Black Box Evaluation of LLM Unlearning Methods [1.9799527196428242]
Large language model unlearning aims to remove harmful information that LLMs have learnt to prevent their use for malicious purposes.
We show that unlearning has a notable impact on general model capabilities.
We show that doing 5-shot prompting or rephrasing the question in simple ways can lead to an over ten-fold increase in accuracy on unlearning benchmarks.
arXiv Detail & Related papers (2024-11-18T22:31:17Z) - Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
Large Language Models (LLMs) are increasingly recognized for their practical applications.
Retrieval-Augmented Generation (RAG) tackles this challenge and has shown a significant impact on LLMs.
By minimizing retrieval requests that yield neutral or harmful results, we can effectively reduce both time and computational costs.
arXiv Detail & Related papers (2024-11-09T15:12:28Z) - WAGLE: Strategic Weight Attribution for Effective and Modular Unlearning in Large Language Models [26.07431044262102]
This paper explores how model weights interact with unlearning processes in large language models (LLMs)
We design the weight attribution-guided LLM unlearning method, WAGLE, which unveils the interconnections between 'influence' of weights and 'influence' of data to forget and retain.
arXiv Detail & Related papers (2024-10-23T02:22:07Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - MoExtend: Tuning New Experts for Modality and Task Extension [61.29100693866109]
MoExtend is an effective framework designed to streamline the modality adaptation and extension of Mixture-of-Experts (MoE) models.
MoExtend seamlessly integrates new experts into pre-trained MoE models, endowing them with novel knowledge without the need to tune pretrained models.
arXiv Detail & Related papers (2024-08-07T02:28:37Z) - Practical Unlearning for Large Language Models [23.515444452866404]
Machine unlearning (MU) has emerged as a promising solution to address these issues.
MU typically assumes full access to the original training data to preserve utility.
Existing LLM unlearning methods often assume access to data most affected by undesired data unlearning.
We propose the O3 framework to overcome these challenges and achieve practical LLM unlearning.
arXiv Detail & Related papers (2024-07-14T14:26:17Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
This paper seeks to refine the evaluation of machine unlearning for large language models.
It addresses two key challenges -- the robustness of evaluation metrics and the trade-offs between competing goals.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Offset Unlearning for Large Language Models [49.851093293780615]
delta-Unlearning is an offset unlearning framework for black-box LLMs.<n>We show that delta-Unlearning can effectively unlearn target data while maintaining similar or even stronger performance on general out-of-forget-scope tasks.
arXiv Detail & Related papers (2024-04-17T03:39:51Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in large language models (LLMs) with a slim proxy model.
We employ a proxy model which has far fewer parameters, and take its answers as answers.
Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM.
arXiv Detail & Related papers (2024-02-19T11:11:08Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
We explore machine unlearning in the domain of large language models (LLMs)
This initiative aims to eliminate undesirable data influence (e.g., sensitive or illegal information) and the associated model capabilities.
arXiv Detail & Related papers (2024-02-13T20:51:58Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - FreeAL: Towards Human-Free Active Learning in the Era of Large Language
Models [21.88032973150393]
FreeAL interactively distills and filters task-specific knowledge from large language models (LLMs)
Experiments on eight benchmark datasets demonstrate that FreeAL largely enhances the zero-shot performances for both SLM and LLM without any human supervision.
arXiv Detail & Related papers (2023-11-27T08:23:08Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.