Efficient solution of the non-unitary time-dependent Schrodinger equation on a quantum computer with complex absorbing potential
- URL: http://arxiv.org/abs/2311.15859v2
- Date: Wed, 3 Apr 2024 16:13:30 GMT
- Title: Efficient solution of the non-unitary time-dependent Schrodinger equation on a quantum computer with complex absorbing potential
- Authors: Mariane Mangin-Brinet, Jing Zhang, Denis Lacroix, Edgar Andres Ruiz Guzman,
- Abstract summary: We explore the possibility of adding complex absorbing potential at the boundaries of a real-time Schr"odinger evolution on a grid.
We use the dilation quantum algorithm to treat the imaginary-time evolution in parallel to the real-time propagation.
Results obtained on a quantum computer identify with those obtained on a classical computer.
- Score: 5.365601188675682
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We explore the possibility of adding complex absorbing potential at the boundaries when solving the one-dimensional real-time Schr\"odinger evolution on a grid using a quantum computer with a fully quantum algorithm described on a $n$ qubit register. Due to the complex potential, the evolution mixes real- and imaginary-time propagation and the wave function can potentially be continuously absorbed during the time propagation. We use the dilation quantum algorithm to treat the imaginary-time evolution in parallel to the real-time propagation. This method has the advantage of using only one reservoir qubit at a time, that is measured with a certain success probability to implement the desired imaginary-time evolution. We propose a specific prescription for the dilation method where the success probability is directly linked to the physical norm of the continuously absorbed state evolving on the mesh. We expect that the proposed prescription will have the advantage of keeping a high probability of success in most physical situations. Applications of the method are made on one-dimensional wave functions evolving on a mesh. Results obtained on a quantum computer identify with those obtained on a classical computer. We finally give a detailed discussion on the complexity of implementing the dilation matrix. Due to the local nature of the potential, for $n$ qubits, the dilation matrix only requires $2^n$ CNOT and $2^n$ unitary rotation for each time step, whereas it would require of the order of $4^{n+1}$ C-NOT gates to implement it using the best-known algorithm for general unitary matrices.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Constant-Time Quantum Search with a Many-Body Quantum System [39.58317527488534]
We consider a many-body quantum system that naturally effects parallel queries.
We show that its parameters can be tuned to search a database in constant time.
arXiv Detail & Related papers (2024-08-09T22:57:59Z) - Variational method for learning Quantum Channels via Stinespring
Dilation on neutral atom systems [0.0]
Quantum systems interact with their environment, resulting in non-reversible evolutions.
For many quantum experiments, the time until which measurements can be done might be limited.
We introduce a method to approximate a given target quantum channel by means of variationally approximating equivalent unitaries on an extended system.
arXiv Detail & Related papers (2023-09-19T13:06:44Z) - Nuclear Spectra from Quantum Lanczos Algorithm with Real-Time Evolution
and Multiple Reference States [0.0]
I performed numerical simulations to find the low-lying eigenstates of $20$Ne, $22$Na, and $29$Na to compare imaginary- and real-time evolution.
I present the quantum circuits for the QLanczos algorithm with real-time evolution and multiple references.
arXiv Detail & Related papers (2023-09-01T23:25:57Z) - Probabilistic Unitary Formulation of Open Quantum System Dynamics [3.8326963933937885]
We show that for any continuously evolving open quantum system, its dynamics can be described by a time-dependent Hamiltonian and probabilistic combinations of up to $d-1$.
The formalism provides a scheme to control a quantum state to evolve along designed quantum trajectories, and can be particularly useful in quantum computing and quantum simulation scenes.
arXiv Detail & Related papers (2023-07-11T20:07:03Z) - Temporal Entanglement in Chaotic Quantum Circuits [62.997667081978825]
The concept of space-evolution (or space-time duality) has emerged as a promising approach for studying quantum dynamics.
We show that temporal entanglement always follows a volume law in time.
This unexpected structure in the temporal entanglement spectrum might be the key to an efficient computational implementation of the space evolution.
arXiv Detail & Related papers (2023-02-16T18:56:05Z) - Commutation simulator for open quantum dynamics [0.0]
We propose an innovative method to investigate directly the properties of a time-dependent density operator $hatrho(t)$.
We can directly compute the expectation value of the commutation relation and thus of the rate of change of $hatrho(t)$.
A simple but important example is demonstrated in the single-qubit case and we discuss extension of the method for practical quantum simulation with many qubits.
arXiv Detail & Related papers (2022-06-01T16:03:43Z) - Probabilistic imaginary-time evolution by using forward and backward
real-time evolution with a single ancilla: first-quantized eigensolver of
quantum chemistry for ground states [0.0]
Imaginary-time evolution (ITE) on a quantum computer is a promising formalism for obtaining the ground state of a quantum system.
We propose a new approach of PITE which requires only a single ancillary qubit.
We discuss the application of our approach to quantum chemistry by focusing on the scaling of computational cost.
arXiv Detail & Related papers (2021-11-24T12:54:27Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.