Commutation simulator for open quantum dynamics
- URL: http://arxiv.org/abs/2206.00591v1
- Date: Wed, 1 Jun 2022 16:03:43 GMT
- Title: Commutation simulator for open quantum dynamics
- Authors: Jaewoo Joo and Timothy P. Spiller
- Abstract summary: We propose an innovative method to investigate directly the properties of a time-dependent density operator $hatrho(t)$.
We can directly compute the expectation value of the commutation relation and thus of the rate of change of $hatrho(t)$.
A simple but important example is demonstrated in the single-qubit case and we discuss extension of the method for practical quantum simulation with many qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent progress in quantum simulation and algorithms has demonstrated a rapid
expansion in capabilities. The search continues for new techniques and
applications to exploit quantum advantage. Here we propose an innovative method
to investigate directly the properties of a time-dependent density operator
$\hat{\rho}(t)$. Using generalised quantum commutation simulators, we can
directly compute the expectation value of the commutation relation and thus of
the rate of change of $\hat{\rho}(t)$. The approach can be utilised as a
quantum eigen-vector solver for the von Neumann equation and a decoherence
investigator for the Lindblad equation, by using just the statistics of
single-qubit measurements. A simple but important example is demonstrated in
the single-qubit case and we discuss extension of the method for practical
quantum simulation with many qubits, towards investigation of more realistic
quantum systems.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum computing of reacting flows via Hamiltonian simulation [13.377719901871027]
We develop the quantum spectral and finite difference methods for simulating reacting flows in periodic and general conditions.
The present quantum computing algorithms offer a one-shot'' solution for a given time without temporal discretization.
arXiv Detail & Related papers (2023-12-13T04:31:49Z) - Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer [0.40964539027092917]
We propose a practical approach to simulate the dynamics of an open quantum system on a noisy computer.
Our method leverages gate noises on the IBM-Q real device, enabling us to perform calculations using only two qubits.
In the last, to deal with the increasing depth of quantum circuits when doing Trotter expansion, we introduced the transfer tensor method(TTM) to extend our short-term dynamics simulation.
arXiv Detail & Related papers (2023-12-03T13:56:41Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Quantum algorithms for estimating quantum entropies [6.211541620389987]
We propose quantum algorithms to estimate the von Neumann and quantum $alpha$-R'enyi entropies of an fundamental quantum state.
We also show how to efficiently construct the quantum entropy circuits for quantum entropy estimation using single copies of the input state.
arXiv Detail & Related papers (2022-03-04T15:44:24Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.