Towards Adaptive RF Fingerprint-based Authentication of IIoT devices
- URL: http://arxiv.org/abs/2311.15888v1
- Date: Mon, 27 Nov 2023 14:55:32 GMT
- Title: Towards Adaptive RF Fingerprint-based Authentication of IIoT devices
- Authors: Emmanuel Lomba and Ricardo Severino and Ana Fern\'andez Vilas
- Abstract summary: We present a first step towards achieving powerful and flexible IIoT device authentication, by leveraging AI adaptive Radio Frequency Fingerprinting technique selection and tuning, at the PHY layer for highly accurate device authentication over challenging RF environments.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As IoT technologies mature, they are increasingly finding their way into more
sensitive domains, such as Medical and Industrial IoT, in which safety and
cyber-security are of great importance. While the number of deployed IoT
devices continues to increase exponentially, they still present severe
cyber-security vulnerabilities. Effective authentication is paramount to
support trustworthy IIoT communications, however, current solutions focus on
upper-layer identity verification or key-based cryptography which are often
inadequate to the heterogeneous IIoT environment. In this work, we present a
first step towards achieving powerful and flexible IIoT device authentication,
by leveraging AI adaptive Radio Frequency Fingerprinting technique selection
and tuning, at the PHY layer for highly accurate device authentication over
challenging RF environments.
Related papers
- Large-Scale (Semi-)Automated Security Assessment of Consumer IoT Devices -- A Roadmap [1.4680035572775536]
The Internet of Things (IoT) has rapidly expanded across various sectors, with consumer IoT devices experiencing growth.
Common and easy-to-explore vulnerabilities make IoT devices prime targets for malicious actors.
This paper reviews current IoT security challenges and assessment efforts, identifies gaps, and proposes a roadmap for scalable, automated security assessment.
arXiv Detail & Related papers (2025-04-09T09:15:04Z) - 2FA: Navigating the Challenges and Solutions for Inclusive Access [55.2480439325792]
Two-Factor Authentication (2FA) has emerged as a critical solution to protect online activities.
This paper examines the intricacies of deploying 2FA in a way that is secure and accessible to all users.
An analysis was conducted to examine the implementation and availability of various 2FA methods across popular online platforms.
arXiv Detail & Related papers (2025-02-17T12:23:53Z) - Machine Learning-Based Intrusion Detection and Prevention System for IIoT Smart Metering Networks: Challenges and Solutions [0.0]
This paper explores the challenges associated with securing IIoT-based smart metering networks.
It proposes a Machine Learning-based Intrusion Detection and Prevention System (IDPS) for safeguarding edge devices.
arXiv Detail & Related papers (2025-02-16T14:08:59Z) - Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AI-generated synthetic media, also called Deepfakes, have influenced so many domains, from entertainment to cybersecurity.
Deepfake detection has become a vital area of research, focusing on identifying subtle inconsistencies and artifacts with machine learning techniques.
This paper reviews the primary algorithms that address these challenges, examining their advantages, limitations, and future prospects.
arXiv Detail & Related papers (2024-08-01T08:57:47Z) - Opportunistic Sensor-Based Authentication Factors in and for the Internet of Things [0.12289361708127873]
We propose a novel idea to building opportunistic sensor-based authentication factors in the Internet of Things.
We claim that sensors can be utilized to create additional authentication factors, thereby reinforcing existing object-to-object authentication mechanisms.
We demonstrate the feasibility and effectivenness of our idea through illustrative experiments in a parking entry scenario.
arXiv Detail & Related papers (2024-04-11T12:14:04Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Domain-Agnostic Hardware Fingerprinting-Based Device Identifier for Zero-Trust IoT Security [7.8344795632171325]
Next-generation networks aim for comprehensive connectivity, interconnecting humans, machines, devices, and systems seamlessly.
To address this challenge, the Zero Trust (ZT) paradigm emerges as a key method for safeguarding network integrity and data confidentiality.
This work introduces EPS-CNN, a novel deep-learning-based wireless device identification framework.
arXiv Detail & Related papers (2024-02-08T00:23:42Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - CNN based IoT Device Identification [0.0]
We present a method that identifies devices in the Aalto dataset using the convolutional neural network (CNN)
In this study, we present a method that identifies devices in the Aalto dataset using the convolutional neural network (CNN)
arXiv Detail & Related papers (2023-04-27T00:37:16Z) - Face Presentation Attack Detection [59.05779913403134]
Face recognition technology has been widely used in daily interactive applications such as checking-in and mobile payment.
However, its vulnerability to presentation attacks (PAs) limits its reliable use in ultra-secure applicational scenarios.
arXiv Detail & Related papers (2022-12-07T14:51:17Z) - Technical Report-IoT Devices Proximity Authentication In Ad Hoc Network
Environment [0.0]
Internet of Things (IoT) is a distributed communication technology system that offers the possibility for physical devices to connect and exchange data.
authentication to the IoT devices is essential as it is the first step in preventing any negative impact of possible attackers.
This paper implements an IoT devices authentication scheme based on something that is in the IoT devices environment.
arXiv Detail & Related papers (2022-10-01T03:07:42Z) - RIS-assisted UAV Communications for IoT with Wireless Power Transfer
Using Deep Reinforcement Learning [75.677197535939]
We propose a simultaneous wireless power transfer and information transmission scheme for IoT devices with support from unmanned aerial vehicle (UAV) communications.
In a first phase, IoT devices harvest energy from the UAV through wireless power transfer; and then in a second phase, the UAV collects data from the IoT devices through information transmission.
We formulate a Markov decision process and propose two deep reinforcement learning algorithms to solve the optimization problem of maximizing the total network sum-rate.
arXiv Detail & Related papers (2021-08-05T23:55:44Z) - Automated Identification of Vulnerable Devices in Networks using Traffic
Data and Deep Learning [30.536369182792516]
Device-type identification combined with data from vulnerability databases can pinpoint vulnerable IoT devices in a network.
We present and evaluate two deep learning approaches to the reliable IoT device-type identification.
arXiv Detail & Related papers (2021-02-16T14:49:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.