論文の概要: Machine Learning-Enhanced Aircraft Landing Scheduling under
Uncertainties
- arxiv url: http://arxiv.org/abs/2311.16030v1
- Date: Mon, 27 Nov 2023 17:50:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 14:03:38.793365
- Title: Machine Learning-Enhanced Aircraft Landing Scheduling under
Uncertainties
- Title(参考訳): 不確実性下での機械学習による航空機着陸スケジューリング
- Authors: Yutian Pang, Peng Zhao, Jueming Hu, Yongming Liu
- Abstract要約: 自動化と安全性の向上を目的とした,革新的な機械学習(ML)強化型ランディングスケジューリング手法を提案する。
ML予測は、時間制約のある旅行セールスマン問題の定式化において、安全制約として統合される。
ケーススタディでは、FCFS(First-Come-First-Served)ルールと比較して、総着陸時間が平均17.2%減少している。
- 参考スコア(独自算出の注目度): 14.474624795989824
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper addresses aircraft delays, emphasizing their impact on safety and
financial losses. To mitigate these issues, an innovative machine learning
(ML)-enhanced landing scheduling methodology is proposed, aiming to improve
automation and safety. Analyzing flight arrival delay scenarios reveals strong
multimodal distributions and clusters in arrival flight time durations. A
multi-stage conditional ML predictor enhances separation time prediction based
on flight events. ML predictions are then integrated as safety constraints in a
time-constrained traveling salesman problem formulation, solved using
mixed-integer linear programming (MILP). Historical flight recordings and model
predictions address uncertainties between successive flights, ensuring
reliability. The proposed method is validated using real-world data from the
Atlanta Air Route Traffic Control Center (ARTCC ZTL). Case studies demonstrate
an average 17.2% reduction in total landing time compared to the
First-Come-First-Served (FCFS) rule. Unlike FCFS, the proposed methodology
considers uncertainties, instilling confidence in scheduling. The study
concludes with remarks and outlines future research directions.
- Abstract(参考訳): 本稿では、航空機の遅延に対処し、安全性と経済的損失に対する影響を強調した。
これらの問題を緩和するために、自動化と安全性の向上を目的とした、革新的な機械学習(ML)によるランディングスケジューリング手法を提案する。
飛行の到着遅延シナリオを分析すると、到着の飛行時間内に強いマルチモーダル分布とクラスターが現れる。
多段条件ML予測器は、飛行イベントに基づく分離時間予測を強化する。
ml予測は、milp(mixed-integer linear programming)を用いて解く時間制約付きセールスマン問題定式化において、安全制約として統合される。
歴史的飛行記録とモデル予測は、連続する飛行間の不確実性に対処し、信頼性を確保する。
提案手法はatlanta air route traffic control center (artcc ztl) の実世界データを用いて検証される。
ケーススタディでは、FCFS(First-Come-First-Served)ルールと比較して、総着陸時間が平均17.2%減少している。
FCFSとは異なり、提案手法は不確実性を考慮し、スケジューリングに自信を与える。
研究の結論は、今後の研究方針の概要である。
関連論文リスト
- Deciphering Air Travel Disruptions: A Machine Learning Approach [0.0]
本研究は、出発時間、航空会社、空港などの要因を調べることにより、飛行遅延傾向を調査する。
遅延に対する様々なソースのコントリビューションを予測するために、回帰機械学習手法を採用している。
論文 参考訳(メタデータ) (2024-08-05T19:45:07Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - SMURF-THP: Score Matching-based UnceRtainty quantiFication for
Transformer Hawkes Process [76.98721879039559]
SMURF-THPは,変圧器ホークス過程を学習し,予測の不確かさを定量化するスコアベース手法である。
具体的には、SMURF-THPは、スコアマッチング目標に基づいて、イベントの到着時刻のスコア関数を学習する。
我々は,イベントタイプ予測と到着時刻の不確実性定量化の両方において,広範な実験を行う。
論文 参考訳(メタデータ) (2023-10-25T03:33:45Z) - Phased Flight Trajectory Prediction with Deep Learning [8.898269198985576]
過去10年間で民間航空会社や民間機が前例のない増加を遂げたことは、航空交通管理の課題となっている。
正確な飛行軌跡予測は、安全かつ秩序ある飛行の決定に寄与する航空輸送管理において非常に重要である。
本研究では,大型旅客・輸送航空機の飛行軌道予測における最先端手法よりも優れた位相付き飛行軌道予測フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-17T02:16:02Z) - Multi-Airport Delay Prediction with Transformers [0.0]
TFT(Temporal Fusion Transformer)は、複数の空港での出発と到着の遅れを同時に予測するために提案された。
このアプローチは、予測時に既知の入力の複雑な時間的ダイナミクスをキャプチャし、選択された遅延メトリクスを4時間先まで予測することができる。
論文 参考訳(メタデータ) (2021-11-04T21:58:11Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
有効寿命 (Remaining Useful Life, RUL) とは、特定の産業資産の運用期間を推定する問題である。
本研究では,Deep Gaussian Processes (DGPs) を,前述の制限に対する解決策と捉える。
アルゴリズムの性能はNASAの航空機エンジン用N-CMAPSSデータセットで評価される。
論文 参考訳(メタデータ) (2021-04-08T08:50:44Z) - Spatio-Temporal Data Mining for Aviation Delay Prediction [15.621546618044173]
本研究では,商業飛行における長期記憶ネットワーク(LSTM)に基づく航空機遅延予測システムを提案する。
このシステムは、自動監視放送(ADS-B)メッセージから歴史的軌跡から学習する。
従来と比べ,大規模なハブ空港ではより堅牢で正確であることが実証された。
論文 参考訳(メタデータ) (2021-03-20T18:37:06Z) - Deep Learning for Flight Demand Forecasting [0.0]
この研究は、より良いデータソースと堅牢な予測アルゴリズムという2つの重要な側面から予測精度を改善することを目指している。
我々は,シーケンス・ツー・シークエンス(seq2seq)とシークエンス・シークエンス(seq2seq)のDL手法を用いて予測モデルを訓練した。
より優れたデータソースによって、注意を持つseq2seqは、古典的自己回帰(AR)予測法と比較して平均2乗誤差(mse)を60%以上削減することができる。
論文 参考訳(メタデータ) (2020-11-06T16:46:19Z) - T$^2$-Net: A Semi-supervised Deep Model for Turbulence Forecasting [65.498967509424]
空気の乱気流予測は、乗客の安全を保ち、効率を最大化し、コストを下げるガイドルートである有害な乱気流を避けるのに役立つ。
従来の予測手法は、動的で複雑な気象条件では効果の低い、高度にカスタマイズされた乱流指数に依存している。
本研究では,(1)複雑な時間的相関関係と(2)希少性,非常に限られた乱流ラベルが得られるという2つの課題から,機械学習による乱流予測システムを提案する。
論文 参考訳(メタデータ) (2020-10-26T21:14:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。