Relightable 3D Gaussians: Realistic Point Cloud Relighting with BRDF Decomposition and Ray Tracing
- URL: http://arxiv.org/abs/2311.16043v2
- Date: Thu, 8 Aug 2024 00:54:09 GMT
- Title: Relightable 3D Gaussians: Realistic Point Cloud Relighting with BRDF Decomposition and Ray Tracing
- Authors: Jian Gao, Chun Gu, Youtian Lin, Zhihao Li, Hao Zhu, Xun Cao, Li Zhang, Yao Yao,
- Abstract summary: We present a novel differentiable point-based rendering framework to achieve photo-realistic relighting.
The proposed framework showcases the potential to revolutionize the mesh-based graphics pipeline with a point-based pipeline enabling editing, tracing, and relighting.
- Score: 21.498078188364566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a novel differentiable point-based rendering framework to achieve photo-realistic relighting. To make the reconstructed scene relightable, we enhance vanilla 3D Gaussians by associating extra properties, including normal vectors, BRDF parameters, and incident lighting from various directions. From a collection of multi-view images, the 3D scene is optimized through 3D Gaussian Splatting while BRDF and lighting are decomposed by physically based differentiable rendering. To produce plausible shadow effects in photo-realistic relighting, we introduce an innovative point-based ray tracing with the bounding volume hierarchies for efficient visibility pre-computation. Extensive experiments demonstrate our improved BRDF estimation, novel view synthesis and relighting results compared to state-of-the-art approaches. The proposed framework showcases the potential to revolutionize the mesh-based graphics pipeline with a point-based pipeline enabling editing, tracing, and relighting.
Related papers
- GI-GS: Global Illumination Decomposition on Gaussian Splatting for Inverse Rendering [6.820642721852439]
We present GI-GS, a novel inverse rendering framework that leverages 3D Gaussian Splatting (3DGS) and deferred shading.
In our framework, we first render a G-buffer to capture the detailed geometry and material properties of the scene.
With the G-buffer and previous rendering results, the indirect lighting can be calculated through a lightweight path tracing.
arXiv Detail & Related papers (2024-10-03T15:58:18Z) - PBIR-NIE: Glossy Object Capture under Non-Distant Lighting [30.325872237020395]
Glossy objects present a significant challenge for 3D reconstruction from multi-view input images under natural lighting.
We introduce PBIR-NIE, an inverse rendering framework designed to holistically capture the geometry, material attributes, and surrounding illumination of such objects.
arXiv Detail & Related papers (2024-08-13T13:26:24Z) - GS-Phong: Meta-Learned 3D Gaussians for Relightable Novel View Synthesis [63.5925701087252]
We propose a novel method for representing a scene illuminated by a point light using a set of relightable 3D Gaussian points.
Inspired by the Blinn-Phong model, our approach decomposes the scene into ambient, diffuse, and specular components.
To facilitate the decomposition of geometric information independent of lighting conditions, we introduce a novel bilevel optimization-based meta-learning framework.
arXiv Detail & Related papers (2024-05-31T13:48:54Z) - DeferredGS: Decoupled and Editable Gaussian Splatting with Deferred Shading [50.331929164207324]
We introduce DeferredGS, a method for decoupling and editing the Gaussian splatting representation using deferred shading.
Both qualitative and quantitative experiments demonstrate the superior performance of DeferredGS in novel view and editing tasks.
arXiv Detail & Related papers (2024-04-15T01:58:54Z) - GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization [62.13932669494098]
This paper presents a 3D Gaussian Inverse Rendering (GIR) method, employing 3D Gaussian representations to factorize the scene into material properties, light, and geometry.
We compute the normal of each 3D Gaussian using the shortest eigenvector, with a directional masking scheme forcing accurate normal estimation without external supervision.
We adopt an efficient voxel-based indirect illumination tracing scheme that stores direction-aware outgoing radiance in each 3D Gaussian to disentangle secondary illumination for approximating multi-bounce light transport.
arXiv Detail & Related papers (2023-12-08T16:05:15Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
We present a novel inverse rendering framework for large urban scenes capable of jointly reconstructing the scene geometry, spatially-varying materials, and HDR lighting from a set of posed RGB images with optional depth.
Specifically, we use a neural field to account for the primary rays, and use an explicit mesh (reconstructed from the underlying neural field) for modeling secondary rays that produce higher-order lighting effects such as cast shadows.
arXiv Detail & Related papers (2023-04-06T17:51:54Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.