BEAM: Bridging Physically-based Rendering and Gaussian Modeling for Relightable Volumetric Video
- URL: http://arxiv.org/abs/2502.08297v1
- Date: Wed, 12 Feb 2025 10:58:09 GMT
- Title: BEAM: Bridging Physically-based Rendering and Gaussian Modeling for Relightable Volumetric Video
- Authors: Yu Hong, Yize Wu, Zhehao Shen, Chengcheng Guo, Yuheng Jiang, Yingliang Zhang, Jingyi Yu, Lan Xu,
- Abstract summary: Volumetric video enables immersive experiences by capturing dynamic 3D scenes, enabling diverse applications for virtual reality, education, and telepresence.
We present BEAM, a novel pipeline that bridges 4D Gaussian representations with physically-based rendering (PBR) to produce high-quality, relightable videos.
- Score: 44.50599475213118
- License:
- Abstract: Volumetric video enables immersive experiences by capturing dynamic 3D scenes, enabling diverse applications for virtual reality, education, and telepresence. However, traditional methods struggle with fixed lighting conditions, while neural approaches face trade-offs in efficiency, quality, or adaptability for relightable scenarios. To address these limitations, we present BEAM, a novel pipeline that bridges 4D Gaussian representations with physically-based rendering (PBR) to produce high-quality, relightable volumetric videos from multi-view RGB footage. BEAM recovers detailed geometry and PBR properties via a series of available Gaussian-based techniques. It first combines Gaussian-based performance tracking with geometry-aware rasterization in a coarse-to-fine optimization framework to recover spatially and temporally consistent geometries. We further enhance Gaussian attributes by incorporating PBR properties step by step. We generate roughness via a multi-view-conditioned diffusion model, and then derive AO and base color using a 2D-to-3D strategy, incorporating a tailored Gaussian-based ray tracer for efficient visibility computation. Once recovered, these dynamic, relightable assets integrate seamlessly into traditional CG pipelines, supporting real-time rendering with deferred shading and offline rendering with ray tracing. By offering realistic, lifelike visualizations under diverse lighting conditions, BEAM opens new possibilities for interactive entertainment, storytelling, and creative visualization.
Related papers
- 3D Gaussian Splatting with Normal Information for Mesh Extraction and Improved Rendering [8.59572577251833]
We propose a novel regularization method using the gradients of a signed distance function estimated from the Gaussians.
We demonstrate the effectiveness of our approach on datasets such as Mip-NeRF360, Tanks and Temples, and Deep-Blending.
arXiv Detail & Related papers (2025-01-14T18:40:33Z) - GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
We present GUS-IR, a novel framework designed to address the inverse rendering problem for complicated scenes featuring rough and glossy surfaces.
This paper starts by analyzing and comparing two prominent shading techniques popularly used for inverse rendering, forward shading and deferred shading.
We propose a unified shading solution that combines the advantages of both techniques for better decomposition.
arXiv Detail & Related papers (2024-11-12T01:51:05Z) - BiGS: Bidirectional Gaussian Primitives for Relightable 3D Gaussian Splatting [10.918133974256913]
We present Bidirectional Gaussian Primitives, an image-based novel view synthesis technique.
Our approach integrates light intrinsic decomposition into the Gaussian splatting framework, enabling real-time relighting of 3D objects.
arXiv Detail & Related papers (2024-08-23T21:04:40Z) - DeferredGS: Decoupled and Editable Gaussian Splatting with Deferred Shading [50.331929164207324]
We introduce DeferredGS, a method for decoupling and editing the Gaussian splatting representation using deferred shading.
Both qualitative and quantitative experiments demonstrate the superior performance of DeferredGS in novel view and editing tasks.
arXiv Detail & Related papers (2024-04-15T01:58:54Z) - Relightable 3D Gaussians: Realistic Point Cloud Relighting with BRDF Decomposition and Ray Tracing [21.498078188364566]
We present a novel differentiable point-based rendering framework to achieve photo-realistic relighting.
The proposed framework showcases the potential to revolutionize the mesh-based graphics pipeline with a point-based pipeline enabling editing, tracing, and relighting.
arXiv Detail & Related papers (2023-11-27T18:07:58Z) - FLARE: Fast Learning of Animatable and Relightable Mesh Avatars [64.48254296523977]
Our goal is to efficiently learn personalized animatable 3D head avatars from videos that are geometrically accurate, realistic, relightable, and compatible with current rendering systems.
We introduce FLARE, a technique that enables the creation of animatable and relightable avatars from a single monocular video.
arXiv Detail & Related papers (2023-10-26T16:13:00Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
We present a novel inverse rendering framework for large urban scenes capable of jointly reconstructing the scene geometry, spatially-varying materials, and HDR lighting from a set of posed RGB images with optional depth.
Specifically, we use a neural field to account for the primary rays, and use an explicit mesh (reconstructed from the underlying neural field) for modeling secondary rays that produce higher-order lighting effects such as cast shadows.
arXiv Detail & Related papers (2023-04-06T17:51:54Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.