ViT-Lens: Towards Omni-modal Representations
- URL: http://arxiv.org/abs/2311.16081v2
- Date: Tue, 26 Mar 2024 13:32:06 GMT
- Title: ViT-Lens: Towards Omni-modal Representations
- Authors: Weixian Lei, Yixiao Ge, Kun Yi, Jianfeng Zhang, Difei Gao, Dylan Sun, Yuying Ge, Ying Shan, Mike Zheng Shou,
- Abstract summary: ViT-Lens-2 is a framework for representation learning of increasing modalities.
We show that ViT-Lens-2 can learn representations for 3D point cloud, depth, audio, tactile and EEG.
By seamlessly integrating ViT-Lens-2 into Multimodal Foundation Models, we enable Any-modality to Text and Image Generation.
- Score: 64.66508684336614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aiming to advance AI agents, large foundation models significantly improve reasoning and instruction execution, yet the current focus on vision and language neglects the potential of perceiving diverse modalities in open-world environments. However, the success of data-driven vision and language models is costly or even infeasible to be reproduced for rare modalities. In this paper, we present ViT-Lens-2 that facilitates efficient omni-modal representation learning by perceiving novel modalities with a pretrained ViT and aligning them to a pre-defined space. Specifically, the modality-specific lens is tuned to project any-modal signals to an intermediate embedding space, which are then processed by a strong ViT with pre-trained visual knowledge. The encoded representations are optimized toward aligning with the modal-independent space, pre-defined by off-the-shelf foundation models. ViT-Lens-2 provides a unified solution for representation learning of increasing modalities with two appealing advantages: (i) Unlocking the great potential of pretrained ViTs to novel modalities effectively with efficient data regime; (ii) Enabling emergent downstream capabilities through modality alignment and shared ViT parameters. We tailor ViT-Lens-2 to learn representations for 3D point cloud, depth, audio, tactile and EEG, and set new state-of-the-art results across various understanding tasks, such as zero-shot classification. By seamlessly integrating ViT-Lens-2 into Multimodal Foundation Models, we enable Any-modality to Text and Image Generation in a zero-shot manner. Code and models are available at https://github.com/TencentARC/ViT-Lens.
Related papers
- VILA-U: a Unified Foundation Model Integrating Visual Understanding and Generation [45.52926475981602]
VILA-U is a Unified foundation model that integrates Video, Image, Language understanding and generation.
VILA-U employs a single autoregressive next-token prediction framework for both tasks.
arXiv Detail & Related papers (2024-09-06T17:49:56Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
We propose a simple yet effective scheme to harness a diffusion model for visual perception tasks.
We introduce learnable embeddings (meta prompts) to the pre-trained diffusion models to extract proper features for perception.
Our approach achieves new performance records in depth estimation tasks on NYU depth V2 and KITTI, and in semantic segmentation task on CityScapes.
arXiv Detail & Related papers (2023-12-22T14:40:55Z) - Making LLaMA SEE and Draw with SEED Tokenizer [69.1083058794092]
We introduce SEED, an elaborate image tokenizer that empowers Large Language Models with the ability to SEE and Draw.
With SEED tokens, LLM is able to perform scalable multimodal autoregression under its original training recipe.
SEED-LLaMA has exhibited compositional emergent abilities such as multi-turn in-context multimodal generation.
arXiv Detail & Related papers (2023-10-02T14:03:02Z) - ViLTA: Enhancing Vision-Language Pre-training through Textual
Augmentation [35.05755930636518]
We propose ViLTA, comprising of two components to further facilitate the model to learn fine-grained representations among image-text pairs.
For Masked Language Modeling (MLM), we propose a cross-distillation method to generate soft labels to enhance the robustness of model.
For Image-Text Matching (ITM), we leverage the current language encoder to synthesize hard negatives based on the context of language input.
arXiv Detail & Related papers (2023-08-31T12:46:36Z) - ViT-Lens: Initiating Omni-Modal Exploration through 3D Insights [61.36309876889977]
ViT-Lens enables efficient omni-modal representation learning by perceiving novel modalities with a pretrained ViT and aligning to a pre-defined space.
In zero-shot 3D classification, ViT-Lens achieves substantial improvements over previous state-of-the-art.
We will release the results of ViT-Lens on more modalities in the near future.
arXiv Detail & Related papers (2023-08-20T07:26:51Z) - DiMBERT: Learning Vision-Language Grounded Representations with
Disentangled Multimodal-Attention [101.99313208598569]
Vision-and-language (V-L) tasks require the system to understand both vision content and natural language.
We propose DiMBERT (short for Disentangled Multimodal-Attention BERT), which applies separated attention spaces for vision and language.
We show that DiMBERT sets new state-of-the-art performance on three tasks.
arXiv Detail & Related papers (2022-10-28T23:00:40Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUG is a new vision-language foundation model for both cross-modal understanding and generation.
It achieves state-of-the-art results on a wide range of vision-language downstream tasks, such as image captioning, image-text retrieval, visual grounding and visual question answering.
arXiv Detail & Related papers (2022-05-24T11:52:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.