MoCa: Modality-aware Continual Pre-training Makes Better Bidirectional Multimodal Embeddings
- URL: http://arxiv.org/abs/2506.23115v1
- Date: Sun, 29 Jun 2025 06:41:00 GMT
- Title: MoCa: Modality-aware Continual Pre-training Makes Better Bidirectional Multimodal Embeddings
- Authors: Haonan Chen, Hong Liu, Yuping Luo, Liang Wang, Nan Yang, Furu Wei, Zhicheng Dou,
- Abstract summary: MoCa is a framework for transforming pre-trained VLM backbones into effective bidirectional embedding models.<n>MoCa consistently improves performance across MMEB and ViDoRe-v2 benchmarks, achieving new state-of-the-art results.
- Score: 75.0617088717528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal embedding models, built upon causal Vision Language Models (VLMs), have shown promise in various tasks. However, current approaches face three key limitations: the use of causal attention in VLM backbones is suboptimal for embedding tasks; scalability issues due to reliance on high-quality labeled paired data for contrastive learning; and limited diversity in training objectives and data. To address these issues, we propose MoCa, a two-stage framework for transforming pre-trained VLMs into effective bidirectional multimodal embedding models. The first stage, Modality-aware Continual Pre-training, introduces a joint reconstruction objective that simultaneously denoises interleaved text and image inputs, enhancing bidirectional context-aware reasoning. The second stage, Heterogeneous Contrastive Fine-tuning, leverages diverse, semantically rich multimodal data beyond simple image-caption pairs to enhance generalization and alignment. Our method addresses the stated limitations by introducing bidirectional attention through continual pre-training, scaling effectively with massive unlabeled datasets via joint reconstruction objectives, and utilizing diverse multimodal data for enhanced representation robustness. Experiments demonstrate that MoCa consistently improves performance across MMEB and ViDoRe-v2 benchmarks, achieving new state-of-the-art results, and exhibits strong scalability with both model size and training data on MMEB.
Related papers
- Continual Learning for VLMs: A Survey and Taxonomy Beyond Forgetting [70.83781268763215]
Vision-language models (VLMs) have achieved impressive performance across diverse multimodal tasks by leveraging large-scale pre-training.<n>VLMs face unique challenges such as cross-modal feature drift, parameter interference due to shared architectures, and zero-shot capability erosion.<n>This survey aims to serve as a comprehensive and diagnostic reference for researchers developing lifelong vision-language systems.
arXiv Detail & Related papers (2025-08-06T09:03:10Z) - Multi-modal Multi-task Pre-training for Improved Point Cloud Understanding [4.649202831575798]
We propose MMPT, a Multi-modal Multi-task Pre-training framework to enhance point cloud understanding.<n>Three pre-training tasks are devised: Token-level reconstruction (TLR), Point-level reconstruction (PLR) and Multi-modal contrastive learning (MCL)<n>MCL combines feature correspondences within and across modalities, thus assembling a rich learning signal from both 3D point cloud and 2D image modalities.
arXiv Detail & Related papers (2025-07-23T14:13:14Z) - G$^{2}$D: Boosting Multimodal Learning with Gradient-Guided Distillation [0.7673339435080445]
We introduce Gradient-Guided Distillation (G$2$D), a knowledge distillation framework that optimize the multimodal model with a custom-built loss function.<n>We show that G$2$D amplifies the significance of weak modalities while training and outperforms state-of-the-art methods in classification and regression tasks.
arXiv Detail & Related papers (2025-06-26T17:37:36Z) - Continual Multimodal Contrastive Learning [70.60542106731813]
Multimodal contrastive learning (MCL) advances in aligning different modalities and generating multimodal representations in a joint space.<n>However, a critical yet often overlooked challenge remains: multimodal data is rarely collected in a single process, and training from scratch is computationally expensive.<n>In this paper, we formulate CMCL through two specialized principles of stability and plasticity.<n>We theoretically derive a novel optimization-based method, which projects updated gradients from dual sides onto subspaces where any gradient is prevented from interfering with the previously learned knowledge.
arXiv Detail & Related papers (2025-03-19T07:57:08Z) - Enhanced Continual Learning of Vision-Language Models with Model Fusion [16.764069327701186]
Vision-Language Models (VLMs) represent a breakthrough in artificial intelligence.<n>VLMs are susceptible to catastrophic forgetting when sequentially fine-tuned on multiple downstream tasks.<n>We propose Continual Decoupling-Unifying (ConDU), a novel approach, by introducing model fusion into continual learning.
arXiv Detail & Related papers (2025-03-12T15:48:13Z) - LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving [52.83707400688378]
LargeAD is a versatile and scalable framework designed for large-scale 3D pretraining across diverse real-world driving datasets.<n>Our framework leverages VFMs to extract semantically rich superpixels from 2D images, which are aligned with LiDAR point clouds to generate high-quality contrastive samples.<n>Our approach delivers significant performance improvements over state-of-the-art methods in both linear probing and fine-tuning tasks for both LiDAR-based segmentation and object detection.
arXiv Detail & Related papers (2025-01-07T18:59:59Z) - Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning [79.46570165281084]
We propose a Multi-Stage Knowledge Integration network (MulKI) to emulate the human learning process in distillation methods.
MulKI achieves this through four stages, including Eliciting Ideas, Adding New Ideas, Distinguishing Ideas, and Making Connections.
Our method demonstrates significant improvements in maintaining zero-shot capabilities while supporting continual learning across diverse downstream tasks.
arXiv Detail & Related papers (2024-11-11T07:36:19Z) - Cross-Modal Few-Shot Learning: a Generative Transfer Learning Framework [58.362064122489166]
This paper introduces the Cross-modal Few-Shot Learning task, which aims to recognize instances across multiple modalities while relying on scarce labeled data.<n>We propose a Generative Transfer Learning framework by simulating how humans abstract and generalize concepts.<n>We show that the GTL achieves state-of-the-art performance across seven multi-modal datasets across RGB-Sketch, RGB-Infrared, and RGB-Depth.
arXiv Detail & Related papers (2024-10-14T16:09:38Z) - Improving Discriminative Multi-Modal Learning with Large-Scale
Pre-Trained Models [51.5543321122664]
This paper investigates how to better leverage large-scale pre-trained uni-modal models to enhance discriminative multi-modal learning.
We introduce Multi-Modal Low-Rank Adaptation learning (MMLoRA)
arXiv Detail & Related papers (2023-10-08T15:01:54Z) - Efficient Multimodal Transformer with Dual-Level Feature Restoration for
Robust Multimodal Sentiment Analysis [47.29528724322795]
Multimodal Sentiment Analysis (MSA) has attracted increasing attention recently.
Despite significant progress, there are still two major challenges on the way towards robust MSA.
We propose a generic and unified framework to address them, named Efficient Multimodal Transformer with Dual-Level Feature Restoration (EMT-DLFR)
arXiv Detail & Related papers (2022-08-16T08:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.