論文の概要: Animatable Gaussians: Learning Pose-dependent Gaussian Maps for High-fidelity Human Avatar Modeling
- arxiv url: http://arxiv.org/abs/2311.16096v2
- Date: Fri, 15 Mar 2024 08:32:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 22:53:06.745818
- Title: Animatable Gaussians: Learning Pose-dependent Gaussian Maps for High-fidelity Human Avatar Modeling
- Title(参考訳): Animatable Gaussian:高忠実な人間のアバターモデリングのためのPose-dependent Gaussian Mapsの学習
- Authors: Zhe Li, Zerong Zheng, Lizhen Wang, Yebin Liu,
- Abstract要約: 強力な2次元CNNと3次元ガウススプラッティングを利用して高忠実度アバターを作成するアバター表現を導入する。
学習されたテンプレートは、ドレスのようなよりゆるい服をモデル化するための衣服に適応する。
我々の手法は、動的で現実的で一般化された外観を持つ生物のようなアバターを作ることができる。
- 参考スコア(独自算出の注目度): 44.57339753320674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling animatable human avatars from RGB videos is a long-standing and challenging problem. Recent works usually adopt MLP-based neural radiance fields (NeRF) to represent 3D humans, but it remains difficult for pure MLPs to regress pose-dependent garment details. To this end, we introduce Animatable Gaussians, a new avatar representation that leverages powerful 2D CNNs and 3D Gaussian splatting to create high-fidelity avatars. To associate 3D Gaussians with the animatable avatar, we learn a parametric template from the input videos, and then parameterize the template on two front \& back canonical Gaussian maps where each pixel represents a 3D Gaussian. The learned template is adaptive to the wearing garments for modeling looser clothes like dresses. Such template-guided 2D parameterization enables us to employ a powerful StyleGAN-based CNN to learn the pose-dependent Gaussian maps for modeling detailed dynamic appearances. Furthermore, we introduce a pose projection strategy for better generalization given novel poses. Overall, our method can create lifelike avatars with dynamic, realistic and generalized appearances. Experiments show that our method outperforms other state-of-the-art approaches. Code: https://github.com/lizhe00/AnimatableGaussians
- Abstract(参考訳): RGBビデオからアニマタブルな人間のアバターをモデル化することは、長年の課題である。
最近の研究は、通常3次元人間を表現するために、MLPベースの神経放射場(NeRF)を採用するが、純粋なMLPがポーズ依存の衣服の詳細を遅らせることは困難である。
この目的のために、強力な2次元CNNと3次元ガウススプラッティングを利用して高忠実度アバターを作成する新しいアバター表現であるAnimatable Gaussianを導入する。
アニマタブルなアバターと3Dガウスアンを関連付けるために,入力ビデオからパラメトリックテンプレートを学習し,各画素が3Dガウスアンを表す2つの前後カノニカルガウス写像上のテンプレートをパラメータ化する。
学習されたテンプレートは、ドレスのようなよりゆるい服をモデル化するための衣服に適応する。
このようなテンプレート誘導2次元パラメータ化により、強力なStyleGANベースのCNNを用いて、ポーズ依存ガウス写像を学習し、詳細な動的外観をモデル化することができる。
さらに,新規なポーズに対して,より優れた一般化のためのポーズプロジェクション戦略を導入する。
全体として,本手法は動的,現実的,一般化された外観を持つ生活型アバターを作成できる。
実験により,本手法が他の最先端手法よりも優れていることが示された。
コード:https://github.com/lizhe00/AnimatableGaussians
関連論文リスト
- DEGAS: Detailed Expressions on Full-Body Gaussian Avatars [13.683836322899953]
顔表情の豊かなフルボディアバターに対する3次元ガウススティング(3DGS)に基づくモデリング手法であるDEGASを提案する。
本稿では,2次元の顔と3次元のアバターのギャップを埋めて,2次元の肖像画にのみ訓練された潜在空間を採用することを提案する。
論文 参考訳(メタデータ) (2024-08-20T06:52:03Z) - Deformable 3D Gaussian Splatting for Animatable Human Avatars [50.61374254699761]
本稿では,デジタルアバターを単一単分子配列で構築する手法を提案する。
ParDy-Humanは、リアルなダイナミックな人間のアバターの明示的なモデルを構成する。
当社のアバター学習には,Splatマスクなどの追加アノテーションが不要であり,ユーザのハードウェア上でも,フル解像度の画像を効率的に推測しながら,さまざまなバックグラウンドでトレーニングすることが可能である。
論文 参考訳(メタデータ) (2023-12-22T20:56:46Z) - GAvatar: Animatable 3D Gaussian Avatars with Implicit Mesh Learning [60.33970027554299]
ガウススプラッティングは、明示的(メッシュ)と暗黙的(NeRF)の両方の3D表現の利点を利用する強力な3D表現として登場した。
本稿では,ガウススプラッティングを利用してテキスト記述から現実的なアニマタブルなアバターを生成する。
提案手法であるGAvatarは,テキストプロンプトのみを用いて,多様なアニマタブルアバターを大規模に生成する。
論文 参考訳(メタデータ) (2023-12-18T18:59:12Z) - GaussianAvatar: Towards Realistic Human Avatar Modeling from a Single Video via Animatable 3D Gaussians [51.46168990249278]
一つのビデオから動的に3D映像を映し出すリアルな人間のアバターを作成するための効率的なアプローチを提案する。
GustafAvatarは、公開データセットと収集データセットの両方で検証されています。
論文 参考訳(メタデータ) (2023-12-04T18:55:45Z) - GaussianAvatars: Photorealistic Head Avatars with Rigged 3D Gaussians [41.378083782290545]
本稿では,表現,ポーズ,視点の面で完全に制御可能な光現実的頭部アバターを作成するための新しい手法を提案する。
中心となる考え方は、3次元ガウスのスプレートをパラメトリックな形態素面モデルに組み込んだ動的3次元表現である。
我々は、いくつかの挑戦的なシナリオにおいて、フォトリアリスティックアバターのアニメーション能力を実演する。
論文 参考訳(メタデータ) (2023-12-04T17:28:35Z) - AvatarGen: A 3D Generative Model for Animatable Human Avatars [108.11137221845352]
アバタージェネレーション(AvatarGen)は、様々な外観と制御可能なジオメトリーを持つ3D認識された人間の無監督世代である。
提案手法は, 高品質な外観と幾何学的モデリングにより, アニマタブルな3次元アバターを生成することができる。
シングルビュー再構成、再アニメーション、テキスト誘導合成/編集など、多くのアプリケーションに向いている。
論文 参考訳(メタデータ) (2022-11-26T15:15:45Z) - AvatarGen: a 3D Generative Model for Animatable Human Avatars [108.11137221845352]
アバタージェネレーション(AvatarGen)は、多様な外観を持つ非剛体世代だけでなく、ポーズや視点の完全な制御を可能にする最初の方法である。
非剛性力学をモデル化するために、正準空間におけるポーズ依存的な変形を学習するための変形ネットワークを導入する。
提案手法は,高品質な外観と幾何モデルを備えたアニマタブルな人体アバターを生成でき,従来の3D GANよりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-08-01T01:27:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。