論文の概要: Sanity checks for patch visualisation in prototype-based image
classification
- arxiv url: http://arxiv.org/abs/2311.16120v1
- Date: Wed, 25 Oct 2023 08:13:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 15:25:07.732555
- Title: Sanity checks for patch visualisation in prototype-based image
classification
- Title(参考訳): プロトタイプ画像分類におけるパッチビジュアライゼーションの正当性チェック
- Authors: Romain Xu-Darme (LSL, LIG), Georges Qu\'enot (LIG), Zakaria Chihani
(LSL), Marie-Christine Rousset (LIG)
- Abstract要約: 本稿では,ProtoPNetとProtoTreeで実装された可視化手法が画像内の関心領域を正しく識別していないことを示す。
また、より忠実な画像パッチを提供する他のサリエンシ手法を使用することで、この問題を緩和できることを定量的に示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we perform an analysis of the visualisation methods implemented
in ProtoPNet and ProtoTree, two self-explaining visual classifiers based on
prototypes. We show that such methods do not correctly identify the regions of
interest inside of the images, and therefore do not reflect the model
behaviour, which can create a false sense of bias in the model. We also
demonstrate quantitatively that this issue can be mitigated by using other
saliency methods that provide more faithful image patches.
- Abstract(参考訳): 本研究では,プロトタイプに基づく2つの自己説明型視覚分類器であるProtoPNetとProtoTreeで実装された可視化手法の解析を行う。
このような手法は、画像内の関心領域を正しく識別せず、従ってモデル動作を反映せず、モデルに誤ったバイアスを生じさせる可能性があることを示す。
また、より忠実な画像パッチを提供する他のサリエンシ手法を使用することで、この問題を緩和できることを定量的に示す。
関連論文リスト
- ProtoP-OD: Explainable Object Detection with Prototypical Parts [0.0]
本稿では、原型的局所特徴を構築し、オブジェクト検出に使用するトランスフォーマーの検出拡張を提案する。
提案した拡張は、プロトタイプアクティベーションの離散化表現を演算するボトルネックモジュール、プロトタイプネックで構成されている。
論文 参考訳(メタデータ) (2024-02-29T13:25:15Z) - This Looks Like Those: Illuminating Prototypical Concepts Using Multiple
Visualizations [19.724372592639774]
ProtoConceptsは,ディープラーニングとケースベース推論を組み合わせた画像分類手法である。
提案手法は,プロトタイプベースネットワークのアーキテクチャを改良し,複数のイメージパッチを用いて視覚化された概念を学習する。
実験の結果,この手法は,既存の画像分類網の広範な変更として適用可能であることがわかった。
論文 参考訳(メタデータ) (2023-10-28T04:54:48Z) - Zero-shot Model Diagnosis [80.36063332820568]
ディープラーニングモデルを評価するための一般的なアプローチは、興味のある属性を持つラベル付きテストセットを構築し、そのパフォーマンスを評価することである。
本稿では,ゼロショットモデル診断(ZOOM)がテストセットやラベル付けを必要とせずに可能であることを論じる。
論文 参考訳(メタデータ) (2023-03-27T17:59:33Z) - Sanity checks and improvements for patch visualisation in
prototype-based image classification [0.0]
プロトタイプに基づく視覚分類のための2つの一般的な自己説明モデルに実装された視覚的手法の詳細な分析を行う。
まず、そのような手法は画像内の関心領域を正確に識別せず、従ってモデル動作を反映しないことを示す。
我々は,同じ可視化手法を共有する他のプロトタイプベースモデルに対して,本研究がもたらす意味について論じる。
論文 参考訳(メタデータ) (2023-01-20T15:13:04Z) - DisPositioNet: Disentangled Pose and Identity in Semantic Image
Manipulation [83.51882381294357]
DisPositioNetは、シーングラフを用いた画像操作のタスクに対して、各オブジェクトのアンタングル表現を学習するモデルである。
我々のフレームワークは、グラフ内の特徴表現と同様に、変分潜在埋め込みの切り離しを可能にする。
論文 参考訳(メタデータ) (2022-11-10T11:47:37Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - Instance Localization for Self-supervised Detection Pretraining [68.24102560821623]
インスタンスローカリゼーションと呼ばれる,新たな自己監視型プリテキストタスクを提案する。
境界ボックスを事前学習に組み込むことで、より優れたタスクアライメントとアーキテクチャアライメントが促進されることを示す。
実験結果から, オブジェクト検出のための最先端の転送学習結果が得られた。
論文 参考訳(メタデータ) (2021-02-16T17:58:57Z) - This Looks Like That, Because ... Explaining Prototypes for
Interpretable Image Recognition [4.396860522241307]
プロトタイプを説明するべきだ、と私たちは主張する。
本手法は,色調,形状,テクスチャ,コントラスト,彩度の影響を定量化し,プロトタイプの意味を明らかにする。
このような「誤解を招く」プロトタイプを説明することで、プロトタイプベースの分類モデルの解釈可能性とシミュラビリティを向上させることができる。
論文 参考訳(メタデータ) (2020-11-05T14:43:07Z) - Synthesizing the Unseen for Zero-shot Object Detection [72.38031440014463]
そこで本研究では,視覚領域における視覚的特徴と視覚的対象の両方を学習するために,視覚的特徴を合成することを提案する。
クラスセマンティックスを用いた新しい生成モデルを用いて特徴を生成するだけでなく,特徴を識別的に分離する。
論文 参考訳(メタデータ) (2020-10-19T12:36:11Z) - Towards Visually Explaining Similarity Models [29.704524987493766]
本稿では,画像類似度予測のための勾配に基づく視覚的注意を生成する手法を提案する。
学習した機能の埋め込みにのみ依存することにより、我々のアプローチがCNNベースの類似性アーキテクチャのあらゆる種類に適用可能であることを示す。
得られたアテンションマップは、単に解釈可能性だけでなく、新たなトレーニング可能な制約でモデル学習プロセス自体に注入可能であることを示す。
論文 参考訳(メタデータ) (2020-08-13T17:47:41Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
コントラスト学習は教師なし表現学習に革命をもたらした。
現在のコントラストモデルでは、前景オブジェクトのローカライズには効果がない。
本稿では,背景変化を学習するためのデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2020-04-14T16:29:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。