Streaming Lossless Volumetric Compression of Medical Images Using Gated
Recurrent Convolutional Neural Network
- URL: http://arxiv.org/abs/2311.16200v1
- Date: Mon, 27 Nov 2023 07:19:09 GMT
- Title: Streaming Lossless Volumetric Compression of Medical Images Using Gated
Recurrent Convolutional Neural Network
- Authors: Qianhao Chen, Jietao Chen
- Abstract summary: This paper introduces a hardware-friendly streaming lossless volumetric compression framework.
We propose a gated recurrent convolutional neural network that combines diverse convolutional structures and fusion gate mechanisms.
Our method exhibits robust generalization ability and competitive compression speed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based lossless compression methods offer substantial advantages
in compressing medical volumetric images. Nevertheless, many learning-based
algorithms encounter a trade-off between practicality and compression
performance. This paper introduces a hardware-friendly streaming lossless
volumetric compression framework, utilizing merely one-thousandth of the model
weights compared to other learning-based compression frameworks. We propose a
gated recurrent convolutional neural network that combines diverse
convolutional structures and fusion gate mechanisms to capture the inter-slice
dependencies in volumetric images. Based on such contextual information, we can
predict the pixel-by-pixel distribution for entropy coding. Guided by
hardware/software co-design principles, we implement the proposed framework on
Field Programmable Gate Array to achieve enhanced real-time performance.
Extensive experimental results indicate that our method outperforms traditional
lossless volumetric compressors and state-of-the-art learning-based lossless
compression methods across various medical image benchmarks. Additionally, our
method exhibits robust generalization ability and competitive compression speed
Related papers
- Implicit Neural Image Field for Biological Microscopy Image Compression [37.0218688308699]
We propose an adaptive compression workflow based on Implicit Neural Representation (INR)
This approach permits application-specific compression objectives, capable of compressing images of any shape and arbitrary pixel-wise decompression.
We demonstrated on a wide range of microscopy images that our workflow not only achieved high, controllable compression ratios but also preserved detailed information critical for downstream analysis.
arXiv Detail & Related papers (2024-05-29T11:51:33Z) - UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Implicit Neural Representation (INR) networks have shown remarkable versatility due to their flexible compression ratios.
We introduce a codebook containing frequency domain information as a prior input to the INR network.
This enhances the representational power of INR and provides distinctive conditioning for different image blocks.
arXiv Detail & Related papers (2024-05-27T05:52:13Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - Image Compression and Decompression Framework Based on Latent Diffusion
Model for Breast Mammography [0.0]
This research presents a novel framework for the compression and decompression of medical images utilizing the Latent Diffusion Model (LDM)
The LDM represents advancement over the denoising diffusion probabilistic model (DDPM) with a potential to yield superior image quality.
A possible application of LDM and Torchvision for image upscaling has been explored using medical image data.
arXiv Detail & Related papers (2023-10-08T22:08:59Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
We propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression.
We solve the joint lossy and residual compression problem in the approach of VAEs.
In the near-lossless mode, we quantize the original residuals to satisfy a given $ell_infty$ error bound.
arXiv Detail & Related papers (2022-09-11T12:11:56Z) - Learned Lossless Image Compression With Combined Autoregressive Models
And Attention Modules [22.213840578221678]
Lossless image compression is an essential research field in image compression.
Recent learning-based image compression methods achieved impressive performance.
In this paper, we explore the methods widely used in lossy compression and apply them to lossless compression.
arXiv Detail & Related papers (2022-08-30T03:27:05Z) - A Unified Image Preprocessing Framework For Image Compression [5.813935823171752]
We propose a unified image compression preprocessing framework, called Kuchen, to improve the performance of existing codecs.
The framework consists of a hybrid data labeling system along with a learning-based backbone to simulate personalized preprocessing.
Results demonstrate that the modern codecs optimized by our unified preprocessing framework constantly improve the efficiency of the state-of-the-art compression.
arXiv Detail & Related papers (2022-08-15T10:41:00Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Learning Better Lossless Compression Using Lossy Compression [100.50156325096611]
We leverage the powerful lossy image compression algorithm BPG to build a lossless image compression system.
We model the distribution of the residual with a convolutional neural network-based probabilistic model that is conditioned on the BPG reconstruction.
Finally, the image is stored using the concatenation of the bitstreams produced by BPG and the learned residual coder.
arXiv Detail & Related papers (2020-03-23T11:21:52Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
We first conduct a comprehensive literature survey of learned image compression methods.
We describe milestones in cutting-edge learned image-compression methods, review a broad range of existing works, and provide insights into their historical development routes.
By introducing a coarse-to-fine hyperprior model for entropy estimation and signal reconstruction, we achieve improved rate-distortion performance.
arXiv Detail & Related papers (2020-02-10T13:13:43Z) - A Unified End-to-End Framework for Efficient Deep Image Compression [35.156677716140635]
We propose a unified framework called Efficient Deep Image Compression (EDIC) based on three new technologies.
Specifically, we design an auto-encoder style network for learning based image compression.
Our EDIC method can also be readily incorporated with the Deep Video Compression (DVC) framework to further improve the video compression performance.
arXiv Detail & Related papers (2020-02-09T14:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.