$Z^*$: Zero-shot Style Transfer via Attention Rearrangement
- URL: http://arxiv.org/abs/2311.16491v1
- Date: Sat, 25 Nov 2023 11:03:43 GMT
- Title: $Z^*$: Zero-shot Style Transfer via Attention Rearrangement
- Authors: Yingying Deng, Xiangyu He, Fan Tang, Weiming Dong
- Abstract summary: This study shows that vanilla diffusion models can directly extract style information and seamlessly integrate the generative prior into the content image without retraining.
We adopt dual denoising paths to represent content/style references in latent space and then guide the content image denoising process with style latent codes.
- Score: 27.185432348397693
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite the remarkable progress in image style transfer, formulating style in
the context of art is inherently subjective and challenging. In contrast to
existing learning/tuning methods, this study shows that vanilla diffusion
models can directly extract style information and seamlessly integrate the
generative prior into the content image without retraining. Specifically, we
adopt dual denoising paths to represent content/style references in latent
space and then guide the content image denoising process with style latent
codes. We further reveal that the cross-attention mechanism in latent diffusion
models tends to blend the content and style images, resulting in stylized
outputs that deviate from the original content image. To overcome this
limitation, we introduce a cross-attention rearrangement strategy. Through
theoretical analysis and experiments, we demonstrate the effectiveness and
superiority of the diffusion-based $\underline{Z}$ero-shot $\underline{S}$tyle
$\underline{T}$ransfer via $\underline{A}$ttention $\underline{R}$earrangement,
Z-STAR.
Related papers
- DiffuseST: Unleashing the Capability of the Diffusion Model for Style Transfer [13.588643982359413]
Style transfer aims to fuse the artistic representation of a style image with the structural information of a content image.
Existing methods train specific networks or utilize pre-trained models to learn content and style features.
We propose a novel and training-free approach for style transfer, combining textual embedding with spatial features.
arXiv Detail & Related papers (2024-10-19T06:42:43Z) - ZePo: Zero-Shot Portrait Stylization with Faster Sampling [61.14140480095604]
This paper presents an inversion-free portrait stylization framework based on diffusion models that accomplishes content and style feature fusion in merely four sampling steps.
We propose a feature merging strategy to amalgamate redundant features in Consistency Features, thereby reducing the computational load of attention control.
arXiv Detail & Related papers (2024-08-10T08:53:41Z) - D2Styler: Advancing Arbitrary Style Transfer with Discrete Diffusion Methods [2.468658581089448]
We propose a novel framework called D$2$Styler (Discrete Diffusion Styler)
Our method uses Adaptive Instance Normalization (AdaIN) features as a context guide for the reverse diffusion process.
Experimental results demonstrate that D$2$Styler produces high-quality style-transferred images.
arXiv Detail & Related papers (2024-08-07T05:47:06Z) - Artist: Aesthetically Controllable Text-Driven Stylization without Training [19.5597806965592]
We introduce textbfArtist, a training-free approach that aesthetically controls the content and style generation of a pretrained diffusion model for text-driven stylization.
Our key insight is to disentangle the denoising of content and style into separate diffusion processes while sharing information between them.
Our method excels at achieving aesthetic-level stylization requirements, preserving intricate details in the content image and aligning well with the style prompt.
arXiv Detail & Related papers (2024-07-22T17:58:05Z) - ArtWeaver: Advanced Dynamic Style Integration via Diffusion Model [73.95608242322949]
Stylized Text-to-Image Generation (STIG) aims to generate images from text prompts and style reference images.
We present ArtWeaver, a novel framework that leverages pretrained Stable Diffusion to address challenges such as misinterpreted styles and inconsistent semantics.
arXiv Detail & Related papers (2024-05-24T07:19:40Z) - Portrait Diffusion: Training-free Face Stylization with
Chain-of-Painting [64.43760427752532]
Face stylization refers to the transformation of a face into a specific portrait style.
Current methods require the use of example-based adaptation approaches to fine-tune pre-trained generative models.
This paper proposes a training-free face stylization framework, named Portrait Diffusion.
arXiv Detail & Related papers (2023-12-03T06:48:35Z) - ALADIN-NST: Self-supervised disentangled representation learning of
artistic style through Neural Style Transfer [60.6863849241972]
We learn a representation of visual artistic style more strongly disentangled from the semantic content depicted in an image.
We show that strongly addressing the disentanglement of style and content leads to large gains in style-specific metrics.
arXiv Detail & Related papers (2023-04-12T10:33:18Z) - DiffStyler: Controllable Dual Diffusion for Text-Driven Image
Stylization [66.42741426640633]
DiffStyler is a dual diffusion processing architecture to control the balance between the content and style of diffused results.
We propose a content image-based learnable noise on which the reverse denoising process is based, enabling the stylization results to better preserve the structure information of the content image.
arXiv Detail & Related papers (2022-11-19T12:30:44Z) - Diffusion-based Image Translation using Disentangled Style and Content
Representation [51.188396199083336]
Diffusion-based image translation guided by semantic texts or a single target image has enabled flexible style transfer.
It is often difficult to maintain the original content of the image during the reverse diffusion.
We present a novel diffusion-based unsupervised image translation method using disentangled style and content representation.
Our experimental results show that the proposed method outperforms state-of-the-art baseline models in both text-guided and image-guided translation tasks.
arXiv Detail & Related papers (2022-09-30T06:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.