D2Styler: Advancing Arbitrary Style Transfer with Discrete Diffusion Methods
- URL: http://arxiv.org/abs/2408.03558v1
- Date: Wed, 7 Aug 2024 05:47:06 GMT
- Title: D2Styler: Advancing Arbitrary Style Transfer with Discrete Diffusion Methods
- Authors: Onkar Susladkar, Gayatri Deshmukh, Sparsh Mittal, Parth Shastri,
- Abstract summary: We propose a novel framework called D$2$Styler (Discrete Diffusion Styler)
Our method uses Adaptive Instance Normalization (AdaIN) features as a context guide for the reverse diffusion process.
Experimental results demonstrate that D$2$Styler produces high-quality style-transferred images.
- Score: 2.468658581089448
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In image processing, one of the most challenging tasks is to render an image's semantic meaning using a variety of artistic approaches. Existing techniques for arbitrary style transfer (AST) frequently experience mode-collapse, over-stylization, or under-stylization due to a disparity between the style and content images. We propose a novel framework called D$^2$Styler (Discrete Diffusion Styler) that leverages the discrete representational capability of VQ-GANs and the advantages of discrete diffusion, including stable training and avoidance of mode collapse. Our method uses Adaptive Instance Normalization (AdaIN) features as a context guide for the reverse diffusion process. This makes it easy to move features from the style image to the content image without bias. The proposed method substantially enhances the visual quality of style-transferred images, allowing the combination of content and style in a visually appealing manner. We take style images from the WikiArt dataset and content images from the COCO dataset. Experimental results demonstrate that D$^2$Styler produces high-quality style-transferred images and outperforms twelve existing methods on nearly all the metrics. The qualitative results and ablation studies provide further insights into the efficacy of our technique. The code is available at https://github.com/Onkarsus13/D2Styler.
Related papers
- DiffuseST: Unleashing the Capability of the Diffusion Model for Style Transfer [13.588643982359413]
Style transfer aims to fuse the artistic representation of a style image with the structural information of a content image.
Existing methods train specific networks or utilize pre-trained models to learn content and style features.
We propose a novel and training-free approach for style transfer, combining textual embedding with spatial features.
arXiv Detail & Related papers (2024-10-19T06:42:43Z) - Rethink Arbitrary Style Transfer with Transformer and Contrastive Learning [11.900404048019594]
In this paper, we introduce an innovative technique to improve the quality of stylized images.
Firstly, we propose Style Consistency Instance Normalization (SCIN), a method to refine the alignment between content and style features.
In addition, we have developed an Instance-based Contrastive Learning (ICL) approach designed to understand relationships among various styles.
arXiv Detail & Related papers (2024-04-21T08:52:22Z) - Style Aligned Image Generation via Shared Attention [61.121465570763085]
We introduce StyleAligned, a technique designed to establish style alignment among a series of generated images.
By employing minimal attention sharing' during the diffusion process, our method maintains style consistency across images within T2I models.
Our method's evaluation across diverse styles and text prompts demonstrates high-quality and fidelity.
arXiv Detail & Related papers (2023-12-04T18:55:35Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST) is a novel style representation learning and transfer framework.
We present an adaptive contrastive learning scheme for style transfer by introducing an input-dependent temperature.
Our framework consists of three key components, i.e., a parallel contrastive learning scheme for style representation and style transfer, a domain enhancement module for effective learning of style distribution, and a generative network for style transfer.
arXiv Detail & Related papers (2023-03-09T04:35:00Z) - DiffStyler: Controllable Dual Diffusion for Text-Driven Image
Stylization [66.42741426640633]
DiffStyler is a dual diffusion processing architecture to control the balance between the content and style of diffused results.
We propose a content image-based learnable noise on which the reverse denoising process is based, enabling the stylization results to better preserve the structure information of the content image.
arXiv Detail & Related papers (2022-11-19T12:30:44Z) - Learning Diverse Tone Styles for Image Retouching [73.60013618215328]
We propose to learn diverse image retouching with normalizing flow-based architectures.
A joint-training pipeline is composed of a style encoder, a conditional RetouchNet, and the image tone style normalizing flow (TSFlow) module.
Our proposed method performs favorably against state-of-the-art methods and is effective in generating diverse results.
arXiv Detail & Related papers (2022-07-12T09:49:21Z) - Improving the Latent Space of Image Style Transfer [24.37383949267162]
In some cases, the feature statistics from the pre-trained encoder may not be consistent with the visual style we perceived.
In such an inappropriate latent space, the objective function of the existing methods will be optimized in the wrong direction.
We propose two contrastive training schemes to get a refined encoder that is more suitable for this task.
arXiv Detail & Related papers (2022-05-24T15:13:01Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) is a new style representation learning and style transfer method via contrastive learning.
Our framework consists of three key components, i.e., a multi-layer style projector for style code encoding, a domain enhancement module for effective learning of style distribution, and a generative network for image style transfer.
arXiv Detail & Related papers (2022-05-19T13:11:24Z) - Language-Driven Image Style Transfer [72.36790598245096]
We introduce a new task -- language-driven image style transfer (textttLDIST) -- to manipulate the style of a content image, guided by a text.
The discriminator considers the correlation between language and patches of style images or transferred results to jointly embed style instructions.
Experiments show that our CLVA is effective and achieves superb transferred results on textttLDIST.
arXiv Detail & Related papers (2021-06-01T01:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.