Graph Prompt Learning: A Comprehensive Survey and Beyond
- URL: http://arxiv.org/abs/2311.16534v1
- Date: Tue, 28 Nov 2023 05:36:59 GMT
- Title: Graph Prompt Learning: A Comprehensive Survey and Beyond
- Authors: Xiangguo Sun, Jiawen Zhang, Xixi Wu, Hong Cheng, Yun Xiong, Jia Li
- Abstract summary: This paper presents a pioneering survey on the emerging domain of graph prompts in Artificial General Intelligence (AGI)
We propose a unified framework for understanding graph prompt learning, offering clarity on prompt tokens, token structures, and insertion patterns in the graph domain.
A comprehensive taxonomy categorizes over 100 works in this field, aligning them with pre-training tasks across node-level, edge-level, and graph-level objectives.
- Score: 24.64987655155218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial General Intelligence (AGI) has revolutionized numerous fields, yet
its integration with graph data, a cornerstone in our interconnected world,
remains nascent. This paper presents a pioneering survey on the emerging domain
of graph prompts in AGI, addressing key challenges and opportunities in
harnessing graph data for AGI applications. Despite substantial advancements in
AGI across natural language processing and computer vision, the application to
graph data is relatively underexplored. This survey critically evaluates the
current landscape of AGI in handling graph data, highlighting the distinct
challenges in cross-modality, cross-domain, and cross-task applications
specific to graphs. Our work is the first to propose a unified framework for
understanding graph prompt learning, offering clarity on prompt tokens, token
structures, and insertion patterns in the graph domain. We delve into the
intrinsic properties of graph prompts, exploring their flexibility,
expressiveness, and interplay with existing graph models. A comprehensive
taxonomy categorizes over 100 works in this field, aligning them with
pre-training tasks across node-level, edge-level, and graph-level objectives.
Additionally, we present, ProG, a Python library, and an accompanying website,
to support and advance research in graph prompting. The survey culminates in a
discussion of current challenges and future directions, offering a roadmap for
research in graph prompting within AGI. Through this comprehensive analysis, we
aim to catalyze further exploration and practical applications of AGI in graph
data, underlining its potential to reshape AGI fields and beyond. ProG and the
website can be accessed by
\url{https://github.com/WxxShirley/Awesome-Graph-Prompt}, and
\url{https://github.com/sheldonresearch/ProG}, respectively.
Related papers
- Query-Aware Learnable Graph Pooling Tokens as Prompt for Large Language Models [3.9489815622117566]
Learnable Graph Pooling Token (LGPT) enables flexible and efficient graph representation.
Our method achieves a 4.13% performance improvement on the GraphQA benchmark without training the large language model.
arXiv Detail & Related papers (2025-01-29T10:35:41Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)
This framework provides a standardized setting to evaluate GNNs across diverse datasets.
We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - Retrieval-Augmented Generation with Graphs (GraphRAG) [84.29507404866257]
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information.
Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information.
Unlike conventional RAG, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains.
arXiv Detail & Related papers (2024-12-31T06:59:35Z) - Towards Graph Foundation Models: Learning Generalities Across Graphs via Task-Trees [50.78679002846741]
We introduce a novel approach for learning cross-task generalities in graphs.
We propose task-trees as basic learning instances to align task spaces on graphs.
Our findings indicate that when a graph neural network is pretrained on diverse task-trees, it acquires transferable knowledge.
arXiv Detail & Related papers (2024-12-21T02:07:43Z) - Graph Retrieval-Augmented Generation: A Survey [28.979898837538958]
Retrieval-Augmented Generation (RAG) has achieved remarkable success in addressing the challenges of Large Language Models (LLMs) without necessitating retraining.
This paper provides the first comprehensive overview of GraphRAG methodologies.
We formalize the GraphRAG workflow, encompassing Graph-Based Indexing, Graph-Guided Retrieval, and Graph-Enhanced Generation.
arXiv Detail & Related papers (2024-08-15T12:20:24Z) - OpenGraph: Towards Open Graph Foundation Models [20.401374302429627]
Graph Neural Networks (GNNs) have emerged as promising techniques for encoding structural information.
Key challenge remains: the difficulty of generalizing to unseen graph data with different properties.
We propose a novel graph foundation model, called OpenGraph, to address this challenge.
arXiv Detail & Related papers (2024-03-02T08:05:03Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
We develop a flexible question-answering framework targeting real-world textual graphs.
We introduce the first retrieval-augmented generation (RAG) approach for general textual graphs.
G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem.
arXiv Detail & Related papers (2024-02-12T13:13:04Z) - Graph Domain Adaptation: Challenges, Progress and Prospects [61.9048172631524]
We propose graph domain adaptation as an effective knowledge-transfer paradigm across graphs.
GDA introduces a bunch of task-related graphs as source graphs and adapts the knowledge learnt from source graphs to the target graphs.
We outline the research status and challenges, propose a taxonomy, introduce the details of representative works, and discuss the prospects.
arXiv Detail & Related papers (2024-02-01T02:44:32Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
Graph neural networks have emerged as a leading architecture for many graph-level tasks.
graph pooling is indispensable for obtaining a holistic graph-level representation of the whole graph.
arXiv Detail & Related papers (2022-04-15T04:02:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.