Pseudo-Likelihood Inference
- URL: http://arxiv.org/abs/2311.16656v1
- Date: Tue, 28 Nov 2023 10:17:52 GMT
- Title: Pseudo-Likelihood Inference
- Authors: Theo Gruner, Boris Belousov, Fabio Muratore, Daniel Palenicek, Jan
Peters
- Abstract summary: Pseudo-Likelihood Inference (PLI) is a new method that brings neural approximation into ABC, making it competitive on challenging Bayesian system identification tasks.
PLI allows for optimizing neural posteriors via gradient descent, does not rely on summary statistics, and enables multiple observations as input.
The effectiveness of PLI is evaluated on four classical SBI benchmark tasks and on a highly dynamic physical system.
- Score: 16.934708242852558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation-Based Inference (SBI) is a common name for an emerging family of
approaches that infer the model parameters when the likelihood is intractable.
Existing SBI methods either approximate the likelihood, such as Approximate
Bayesian Computation (ABC) or directly model the posterior, such as Sequential
Neural Posterior Estimation (SNPE). While ABC is efficient on low-dimensional
problems, on higher-dimensional tasks, it is generally outperformed by SNPE,
which leverages function approximation. In this paper, we propose
Pseudo-Likelihood Inference (PLI), a new method that brings neural
approximation into ABC, making it competitive on challenging Bayesian system
identification tasks. By utilizing integral probability metrics, we introduce a
smooth likelihood kernel with an adaptive bandwidth that is updated based on
information-theoretic trust regions. Thanks to this formulation, our method (i)
allows for optimizing neural posteriors via gradient descent, (ii) does not
rely on summary statistics, and (iii) enables multiple observations as input.
In comparison to SNPE, it leads to improved performance when more data is
available. The effectiveness of PLI is evaluated on four classical SBI
benchmark tasks and on a highly dynamic physical system, showing particular
advantages on stochastic simulations and multi-modal posterior landscapes.
Related papers
- Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors [17.640500920466984]
This paper presents a novel framework for estimating the joint PMF and automatically inferring its rank from observed data.
We derive a deterministic solution based on variational inference (VI) to approximate the posterior distributions of various model parameters. Additionally, we develop a scalable version of the VI-based approach by leveraging variational inference (SVI)
Experiments involving both synthetic data and real movie recommendation data illustrate the advantages of our VI and SVI-based methods in terms of estimation accuracy, automatic rank detection, and computational efficiency.
arXiv Detail & Related papers (2024-10-08T20:07:49Z) - Preconditioned Neural Posterior Estimation for Likelihood-free Inference [5.651060979874024]
We show in this paper that the neural posterior estimator (NPE) methods are not guaranteed to be highly accurate, even on problems with low dimension.
We propose preconditioned NPE and its sequential version (PSNPE), which uses a short run of ABC to effectively eliminate regions of parameter space that produce large discrepancy between simulations and data.
We present comprehensive empirical evidence that this melding of neural and statistical SBI methods improves performance over a range of examples.
arXiv Detail & Related papers (2024-04-21T07:05:38Z) - A variational neural Bayes framework for inference on intractable posterior distributions [1.0801976288811024]
Posterior distributions of model parameters are efficiently obtained by feeding observed data into a trained neural network.
We show theoretically that our posteriors converge to the true posteriors in Kullback-Leibler divergence.
arXiv Detail & Related papers (2024-04-16T20:40:15Z) - Fast, accurate and lightweight sequential simulation-based inference using Gaussian locally linear mappings [0.820217860574125]
We propose an alternative to "simulation-based inference" ( SBI) that provides both approximations to the likelihood and the posterior distribution.
Our approach produces accurate posterior inference when compared to state-of-the-art NN-based SBI methods, even for multimodal posteriors.
We illustrate our results on several benchmark models from the SBI literature and on a biological model of the translation kinetics after mRNA transfection.
arXiv Detail & Related papers (2024-03-12T09:48:17Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
The sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs)
This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models.
In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
arXiv Detail & Related papers (2023-07-01T18:35:21Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Estimating smooth and sparse neural receptive fields with a flexible
spline basis [5.612292166628669]
Spatio-temporal receptive field (STRF) models are frequently used to approximate the computation implemented by a sensory neuron.
Current state-of-the-art approaches for estimating STRFs based on empirical Bayes are often not computationally efficient in high-dimensional settings.
Here we pursue an alternative approach and encode prior knowledge for estimation of STRFs by choosing a set of basis functions with the desired properties.
arXiv Detail & Related papers (2021-08-17T09:49:50Z) - Probabilistic Case-based Reasoning for Open-World Knowledge Graph
Completion [59.549664231655726]
A case-based reasoning (CBR) system solves a new problem by retrieving cases' that are similar to the given problem.
In this paper, we demonstrate that such a system is achievable for reasoning in knowledge-bases (KBs)
Our approach predicts attributes for an entity by gathering reasoning paths from similar entities in the KB.
arXiv Detail & Related papers (2020-10-07T17:48:12Z) - Optimistic Exploration even with a Pessimistic Initialisation [57.41327865257504]
Optimistic initialisation is an effective strategy for efficient exploration in reinforcement learning (RL)
In particular, in scenarios with only positive rewards, Q-values are initialised at their lowest possible values.
We propose a simple count-based augmentation to pessimistically initialised Q-values that separates the source of optimism from the neural network.
arXiv Detail & Related papers (2020-02-26T17:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.