Fast, accurate and lightweight sequential simulation-based inference using Gaussian locally linear mappings
- URL: http://arxiv.org/abs/2403.07454v3
- Date: Sat, 22 Jun 2024 09:26:27 GMT
- Title: Fast, accurate and lightweight sequential simulation-based inference using Gaussian locally linear mappings
- Authors: Henrik Häggström, Pedro L. C. Rodrigues, Geoffroy Oudoumanessah, Florence Forbes, Umberto Picchini,
- Abstract summary: We propose an alternative to "simulation-based inference" ( SBI) that provides both approximations to the likelihood and the posterior distribution.
Our approach produces accurate posterior inference when compared to state-of-the-art NN-based SBI methods, even for multimodal posteriors.
We illustrate our results on several benchmark models from the SBI literature and on a biological model of the translation kinetics after mRNA transfection.
- Score: 0.820217860574125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian inference for complex models with an intractable likelihood can be tackled using algorithms performing many calls to computer simulators. These approaches are collectively known as "simulation-based inference" (SBI). Recent SBI methods have made use of neural networks (NN) to provide approximate, yet expressive constructs for the unavailable likelihood function and the posterior distribution. However, the trade-off between accuracy and computational demand leaves much space for improvement. In this work, we propose an alternative that provides both approximations to the likelihood and the posterior distribution, using structured mixtures of probability distributions. Our approach produces accurate posterior inference when compared to state-of-the-art NN-based SBI methods, even for multimodal posteriors, while exhibiting a much smaller computational footprint. We illustrate our results on several benchmark models from the SBI literature and on a biological model of the translation kinetics after mRNA transfection.
Related papers
- Preconditioned Neural Posterior Estimation for Likelihood-free Inference [5.651060979874024]
We show in this paper that the neural posterior estimator (NPE) methods are not guaranteed to be highly accurate, even on problems with low dimension.
We propose preconditioned NPE and its sequential version (PSNPE), which uses a short run of ABC to effectively eliminate regions of parameter space that produce large discrepancy between simulations and data.
We present comprehensive empirical evidence that this melding of neural and statistical SBI methods improves performance over a range of examples.
arXiv Detail & Related papers (2024-04-21T07:05:38Z) - A variational neural Bayes framework for inference on intractable posterior distributions [1.0801976288811024]
Posterior distributions of model parameters are efficiently obtained by feeding observed data into a trained neural network.
We show theoretically that our posteriors converge to the true posteriors in Kullback-Leibler divergence.
arXiv Detail & Related papers (2024-04-16T20:40:15Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Pseudo-Likelihood Inference [16.934708242852558]
Pseudo-Likelihood Inference (PLI) is a new method that brings neural approximation into ABC, making it competitive on challenging Bayesian system identification tasks.
PLI allows for optimizing neural posteriors via gradient descent, does not rely on summary statistics, and enables multiple observations as input.
The effectiveness of PLI is evaluated on four classical SBI benchmark tasks and on a highly dynamic physical system.
arXiv Detail & Related papers (2023-11-28T10:17:52Z) - Diffusion models for probabilistic programming [56.47577824219207]
Diffusion Model Variational Inference (DMVI) is a novel method for automated approximate inference in probabilistic programming languages (PPLs)
DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model.
arXiv Detail & Related papers (2023-11-01T12:17:05Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
We present a new method to perform Neural Posterior Estimation (NPE) with a differentiable simulator.
We demonstrate how gradient information helps constrain the shape of the posterior and improves sample-efficiency.
arXiv Detail & Related papers (2022-07-12T16:08:04Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Fully differentiable model discovery [0.0]
We propose an approach by combining neural network based surrogates with Sparse Bayesian Learning.
Our work expands PINNs to various types of neural network architectures, and connects neural network-based surrogates to the rich field of Bayesian parameter inference.
arXiv Detail & Related papers (2021-06-09T08:11:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.