論文の概要: As-Plausible-As-Possible: Plausibility-Aware Mesh Deformation Using 2D Diffusion Priors
- arxiv url: http://arxiv.org/abs/2311.16739v2
- Date: Sat, 30 Mar 2024 12:08:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 15:05:24.170742
- Title: As-Plausible-As-Possible: Plausibility-Aware Mesh Deformation Using 2D Diffusion Priors
- Title(参考訳): As-Plausible-As-Possible: 2次元拡散前処理による可塑性-認識メッシュ変形
- Authors: Seungwoo Yoo, Kunho Kim, Vladimir G. Kim, Minhyuk Sung,
- Abstract要約: 本稿では2次元拡散を利用したAs-Plausible-as-Possible(APAP)メッシュ変形手法を提案する。
我々のフレームワークは、メッシュの変形を表現するために、顔ごとのジャコビアンを用いており、メッシュ座標は微分可能なPoisson Solveによって計算される。
変形メッシュを描画し、得られた2D画像をスコア蒸留サンプリング(SDS)プロセスで使用することにより、事前訓練された2D拡散モデルから有意義な可視性を抽出することができる。
- 参考スコア(独自算出の注目度): 25.06460752634955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present As-Plausible-as-Possible (APAP) mesh deformation technique that leverages 2D diffusion priors to preserve the plausibility of a mesh under user-controlled deformation. Our framework uses per-face Jacobians to represent mesh deformations, where mesh vertex coordinates are computed via a differentiable Poisson Solve. The deformed mesh is rendered, and the resulting 2D image is used in the Score Distillation Sampling (SDS) process, which enables extracting meaningful plausibility priors from a pretrained 2D diffusion model. To better preserve the identity of the edited mesh, we fine-tune our 2D diffusion model with LoRA. Gradients extracted by SDS and a user-prescribed handle displacement are then backpropagated to the per-face Jacobians, and we use iterative gradient descent to compute the final deformation that balances between the user edit and the output plausibility. We evaluate our method with 2D and 3D meshes and demonstrate qualitative and quantitative improvements when using plausibility priors over geometry-preservation or distortion-minimization priors used by previous techniques. Our project page is at: https://as-plausible-aspossible.github.io/
- Abstract(参考訳): 本稿では2次元拡散を利用したAs-Plausible-as-Possible(APAP)メッシュ変形手法を提案する。
我々のフレームワークは、メッシュ変形を表すために、顔ごとのジャコビアンを用いており、メッシュ頂点座標は、微分可能なポアソン解によって計算される。
変形メッシュを描画し、得られた2D画像をスコア蒸留サンプリング(SDS)プロセスで使用することにより、事前訓練された2D拡散モデルから有意義な可視性を抽出することができる。
編集メッシュのアイデンティティをよりよく保存するために、私たちはLoRAで2次元拡散モデルを微調整します。
SDSによって抽出された勾配とユーザが規定するハンドル変位は、顔ごとのジャコビアンに逆転し、ユーザー編集と出力可否のバランスをとる最終的な変形を計算するために反復勾配勾配を用いて計算する。
提案手法を2次元および3次元メッシュを用いて評価し,従来手法で用いた幾何保存や歪み最小化に先立って,定性的かつ定量的な精度向上を図った。
私たちのプロジェクトページは以下の通りです。
関連論文リスト
- GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
単一視点からの3次元オブジェクト再構成のためのガウススプティング表現に基づく拡散モデル手法を提案する。
モデルはGS楕円体の集合で表される3Dオブジェクトを生成することを学習する。
最終的な再構成されたオブジェクトは、高品質な3D構造とテクスチャを持ち、任意のビューで効率的にレンダリングできる。
論文 参考訳(メタデータ) (2024-07-05T03:43:08Z) - DragD3D: Realistic Mesh Editing with Rigidity Control Driven by 2D Diffusion Priors [10.355568895429588]
ダイレクトメッシュの編集と変形は、幾何学的モデリングとアニメーションパイプラインの重要なコンポーネントである。
正規化器は、オブジェクトのグローバルなコンテキストとセマンティクスを意識していない。
我々の変形を制御して,グローバルな文脈を意識した現実的な形状の変形を生成できることが示される。
論文 参考訳(メタデータ) (2023-10-06T19:55:40Z) - Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D
Generation [28.25023686484727]
拡散モデルは勾配のベクトル場を予測することを学習する。
学習した勾配の連鎖則を提案し、微分可能場のヤコビアンを通して拡散モデルのスコアをバックプロパゲートする。
大規模なLAIONデータセットでトレーニングされたStable Diffusionを含む,市販の拡散画像生成モデル上で,アルゴリズムを実行する。
論文 参考訳(メタデータ) (2022-12-01T18:56:37Z) - DreamFusion: Text-to-3D using 2D Diffusion [52.52529213936283]
テキストと画像の合成の最近の進歩は、何十億もの画像と画像のペアで訓練された拡散モデルによって引き起こされている。
本研究では,事前訓練された2次元テキスト・ツー・イメージ拡散モデルを用いてテキスト・ツー・3次元合成を行うことにより,これらの制約を回避する。
提案手法では,3次元トレーニングデータや画像拡散モデルの変更は必要とせず,事前訓練した画像拡散モデルの有効性を実証する。
論文 参考訳(メタデータ) (2022-09-29T17:50:40Z) - Self-supervised Human Mesh Recovery with Cross-Representation Alignment [20.69546341109787]
自己教師付きヒューマンメッシュリカバリ手法は、3Dアノテーション付きベンチマークデータセットの可用性と多様性が制限されているため、一般化性が低い。
頑健だがスパースな表現(2Dキーポイント)からの相補的情報を利用した相互表現アライメントを提案する。
この適応的相互表現アライメントは、偏差から明示的に学習し、相補的な情報(疎表現からの豊かさと密表現からの堅牢さ)をキャプチャする。
論文 参考訳(メタデータ) (2022-09-10T04:47:20Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
本稿では、2つの出力ヘッドを2つの異なる構成にサブスクライブする共通のディープネットワークバックボーンを構成するMPP-Netを紹介する。
ポーズと関節のレベルで予測の不確実性を定量化するための適切な尺度を導出する。
本稿では,提案手法の総合評価を行い,ベンチマークデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2022-03-29T07:14:58Z) - Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape
Laplacian [58.704089101826774]
形状分類と変形型に最小限の制約を課した3次元画像変形法を提案する。
点雲として表される3次元再構成の基底体積のラプラシアン形状を予測するために,教師付き学習に基づくアプローチを採用する。
実験では,2次元キャラクタと人間の衣料画像の変形実験を行った。
論文 参考訳(メタデータ) (2022-03-29T04:57:18Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) は、2D-3D特徴座標の3Dモデルに関して、高速で正確で堅牢なカメラローカライゼーションを目指している。
論文 参考訳(メタデータ) (2021-07-08T15:19:36Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - Neural Mesh Refiner for 6-DoF Pose Estimation [10.62836310872743]
ディープラーニングは、堅牢でリアルタイムな単眼ポーズ推定に有効であることが示されている。
本稿では,2次元マスク生成と3次元位置予測とのギャップをニューラルネットワークを用いて埋める。
論文 参考訳(メタデータ) (2020-03-17T07:12:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。