Towards Full-scene Domain Generalization in Multi-agent Collaborative
Bird's Eye View Segmentation for Connected and Autonomous Driving
- URL: http://arxiv.org/abs/2311.16754v2
- Date: Mon, 1 Jan 2024 12:27:23 GMT
- Title: Towards Full-scene Domain Generalization in Multi-agent Collaborative
Bird's Eye View Segmentation for Connected and Autonomous Driving
- Authors: Senkang Hu, Zhengru Fang, Xianhao Chen, Yuguang Fang, Sam Kwong
- Abstract summary: We propose a unified domain generalization framework applicable in both training and inference stages of collaborative perception.
We employ an Amplitude Augmentation (AmpAug) method to augment low-frequency image variations, broadening the model's ability to learn.
In the inference phase, we introduce an intra-system domain alignment mechanism to reduce or potentially eliminate the domain discrepancy.
- Score: 54.60458503590669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaborative perception has recently gained significant attention in
autonomous driving, improving perception quality by enabling the exchange of
additional information among vehicles. However, deploying collaborative
perception systems can lead to domain shifts due to diverse environmental
conditions and data heterogeneity among connected and autonomous vehicles
(CAVs). To address these challenges, we propose a unified domain generalization
framework applicable in both training and inference stages of collaborative
perception. In the training phase, we introduce an Amplitude Augmentation
(AmpAug) method to augment low-frequency image variations, broadening the
model's ability to learn across various domains. We also employ a
meta-consistency training scheme to simulate domain shifts, optimizing the
model with a carefully designed consistency loss to encourage domain-invariant
representations. In the inference phase, we introduce an intra-system domain
alignment mechanism to reduce or potentially eliminate the domain discrepancy
among CAVs prior to inference. Comprehensive experiments substantiate the
effectiveness of our method in comparison with the existing state-of-the-art
works. Code will be released at https://github.com/DG-CAVs/DG-CoPerception.git.
Related papers
- Multisource Collaborative Domain Generalization for Cross-Scene Remote Sensing Image Classification [57.945437355714155]
Cross-scene image classification aims to transfer prior knowledge of ground materials to annotate regions with different distributions.
Existing approaches focus on single-source domain generalization to unseen target domains.
We propose a novel multi-source collaborative domain generalization framework (MS-CDG) based on homogeneity and heterogeneity characteristics of multi-source remote sensing data.
arXiv Detail & Related papers (2024-12-05T06:15:08Z) - Investigating the potential of Sparse Mixtures-of-Experts for multi-domain neural machine translation [59.41178047749177]
We focus on multi-domain Neural Machine Translation, with the goal of developing efficient models which can handle data from various domains seen during training and are robust to domains unseen during training.
We hypothesize that Sparse Mixture-of-Experts (SMoE) models are a good fit for this task, as they enable efficient model scaling.
We conduct a series of experiments aimed at validating the utility of SMoE for the multi-domain scenario, and find that a straightforward width scaling of Transformer is a simpler and surprisingly more efficient approach in practice, and reaches the same performance level as SMoE.
arXiv Detail & Related papers (2024-07-01T09:45:22Z) - AD-Aligning: Emulating Human-like Generalization for Cognitive Domain Adaptation in Deep Learning [3.3543468626874486]
Domain adaptation is pivotal for enabling deep learning models to generalize across diverse domains.
We introduce AD-Aligning, a novel approach that combines adversarial training with source-target domain alignment.
Our findings highlight AD-Aligning's ability to emulate the nuanced cognitive processes inherent in human perception.
arXiv Detail & Related papers (2024-05-15T02:34:06Z) - Improving Intrusion Detection with Domain-Invariant Representation Learning in Latent Space [4.871119861180455]
We introduce a two-phase representation learning technique using multi-task learning.
We disentangle the latent space by minimizing the mutual information between the prior and latent space.
We assess the model's efficacy across multiple cybersecurity datasets.
arXiv Detail & Related papers (2023-12-28T17:24:13Z) - Unified Domain Adaptive Semantic Segmentation [96.74199626935294]
Unsupervised Adaptive Domain Semantic (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain.
We propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies.
Our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks.
arXiv Detail & Related papers (2023-11-22T09:18:49Z) - Improving Anomaly Segmentation with Multi-Granularity Cross-Domain
Alignment [17.086123737443714]
Anomaly segmentation plays a pivotal role in identifying atypical objects in images, crucial for hazard detection in autonomous driving systems.
While existing methods demonstrate noteworthy results on synthetic data, they often fail to consider the disparity between synthetic and real-world data domains.
We introduce the Multi-Granularity Cross-Domain Alignment framework, tailored to harmonize features across domains at both the scene and individual sample levels.
arXiv Detail & Related papers (2023-08-16T22:54:49Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Towards Adaptive Semantic Segmentation by Progressive Feature Refinement [16.40758125170239]
We propose an innovative progressive feature refinement framework, along with domain adversarial learning to boost the transferability of segmentation networks.
As a result, the segmentation models trained with source domain images can be transferred to a target domain without significant performance degradation.
arXiv Detail & Related papers (2020-09-30T04:17:48Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.