A Survey of the Evolution of Language Model-Based Dialogue Systems
- URL: http://arxiv.org/abs/2311.16789v1
- Date: Tue, 28 Nov 2023 13:51:32 GMT
- Title: A Survey of the Evolution of Language Model-Based Dialogue Systems
- Authors: Hongru Wang, Lingzhi Wang, Yiming Du, Liang Chen, Jingyan Zhou, Yufei
Wang, Kam-Fai Wong
- Abstract summary: Task-oriented_dialogue_system (TOD) and open-domain_dialogue_system (ODD) have undergone significant transformations.
This survey delves into the historical trajectory of dialogue systems, elucidating their relationship with advancements in language models.
Our survey provides a chronological perspective aligned with LM breakthroughs, offering a comprehensive review of state-of-the-art research outcomes.
- Score: 25.329617430417752
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Dialogue systems, including task-oriented_dialogue_system (TOD) and
open-domain_dialogue_system (ODD), have undergone significant transformations,
with language_models (LM) playing a central role. This survey delves into the
historical trajectory of dialogue systems, elucidating their intricate
relationship with advancements in language models by categorizing this
evolution into four distinct stages, each marked by pivotal LM breakthroughs:
1) Early_Stage: characterized by statistical LMs, resulting in rule-based or
machine-learning-driven dialogue_systems; 2) Independent development of TOD and
ODD based on neural_language_models (NLM; e.g., LSTM and GRU), since NLMs lack
intrinsic knowledge in their parameters; 3) fusion between different types of
dialogue systems with the advert of pre-trained_language_models (PLMs),
starting from the fusion between four_sub-tasks_within_TOD, and then
TOD_with_ODD; and 4) current LLM-based_dialogue_system, wherein LLMs can be
used to conduct TOD and ODD seamlessly. Thus, our survey provides a
chronological perspective aligned with LM breakthroughs, offering a
comprehensive review of state-of-the-art research outcomes. What's more, we
focus on emerging topics and discuss open challenges, providing valuable
insights into future directions for LLM-based_dialogue_systems. Through this
exploration, we pave the way for a deeper_comprehension of the evolution,
guiding future developments in LM-based dialogue_systems.
Related papers
- LLM-Assisted Visual Analytics: Opportunities and Challenges [4.851427485686741]
We explore the integration of large language models (LLMs) into visual analytics (VA) systems.
We highlight the new possibilities that LLMs bring to VA, especially how they can change VA processes beyond the usual use cases.
We carefully consider the prominent challenges of using current LLMs in VA tasks.
arXiv Detail & Related papers (2024-09-04T13:24:03Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - Training Zero-Shot Generalizable End-to-End Task-Oriented Dialog System Without Turn-level Dialog Annotations [2.757798192967912]
This work employs multi-task instruction fine-tuning to create more efficient and scalable task-oriented dialogue systems.
Our approach outperforms both state-of-the-art models trained on annotated data and billion-scale parameter off-the-shelf ChatGPT models.
arXiv Detail & Related papers (2024-07-21T04:52:38Z) - A Survey on Recent Advances in LLM-Based Multi-turn Dialogue Systems [12.999001024463453]
This paper aims to give a summary of existing LLMs and approaches for adapting LLMs to downstream tasks.
It elaborates recent advances in multi-turn dialogue systems, covering both LLM-based open-domain dialogue (ODD) and task-oriented dialogue (TOD) systems.
arXiv Detail & Related papers (2024-02-28T03:16:44Z) - DIALIGHT: Lightweight Multilingual Development and Evaluation of
Task-Oriented Dialogue Systems with Large Language Models [76.79929883963275]
DIALIGHT is a toolkit for developing and evaluating multilingual Task-Oriented Dialogue (ToD) systems.
It features a secure, user-friendly web interface for fine-grained human evaluation at both local utterance level and global dialogue level.
Our evaluations reveal that while PLM fine-tuning leads to higher accuracy and coherence, LLM-based systems excel in producing diverse and likeable responses.
arXiv Detail & Related papers (2024-01-04T11:27:48Z) - Prompting and Evaluating Large Language Models for Proactive Dialogues:
Clarification, Target-guided, and Non-collaboration [72.04629217161656]
This work focuses on three aspects of proactive dialogue systems: clarification, target-guided, and non-collaborative dialogues.
To trigger the proactivity of LLMs, we propose the Proactive Chain-of-Thought prompting scheme.
arXiv Detail & Related papers (2023-05-23T02:49:35Z) - A Mixture-of-Expert Approach to RL-based Dialogue Management [56.08449336469477]
We use reinforcement learning to develop a dialogue agent that avoids being short-sighted (outputting generic utterances) and maximizes overall user satisfaction.
Most existing RL approaches to DM train the agent at the word-level, and thus, have to deal with aly complex action space even for a medium-size vocabulary.
We develop a RL-based DM using a novel mixture of expert language model (MoE-LM) that consists of (i) a LM capable of learning diverse semantics for conversation histories, (ii) a number of specialized LMs (or experts) capable of generating utterances corresponding to a
arXiv Detail & Related papers (2022-05-31T19:00:41Z) - Back to the Future: Bidirectional Information Decoupling Network for
Multi-turn Dialogue Modeling [80.51094098799736]
We propose Bidirectional Information Decoupling Network (BiDeN) as a universal dialogue encoder.
BiDeN explicitly incorporates both the past and future contexts and can be generalized to a wide range of dialogue-related tasks.
Experimental results on datasets of different downstream tasks demonstrate the universality and effectiveness of our BiDeN.
arXiv Detail & Related papers (2022-04-18T03:51:46Z) - Cross-Lingual Dialogue Dataset Creation via Outline-Based Generation [70.81596088969378]
Cross-lingual Outline-based Dialogue dataset (termed COD) enables natural language understanding.
COD enables dialogue state tracking, and end-to-end dialogue modelling and evaluation in 4 diverse languages.
arXiv Detail & Related papers (2022-01-31T18:11:21Z) - Robustness Testing of Language Understanding in Dialog Systems [33.30143655553583]
We conduct comprehensive evaluation and analysis with respect to the robustness of natural language understanding models.
We introduce three important aspects related to language understanding in real-world dialog systems, namely, language variety, speech characteristics, and noise perturbation.
We propose a model-agnostic toolkit LAUG to approximate natural perturbation for testing the robustness issues in dialog systems.
arXiv Detail & Related papers (2020-12-30T18:18:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.