Denoising Diffusion Probabilistic Models for Image Inpainting of Cell
Distributions in the Human Brain
- URL: http://arxiv.org/abs/2311.16821v1
- Date: Tue, 28 Nov 2023 14:34:04 GMT
- Title: Denoising Diffusion Probabilistic Models for Image Inpainting of Cell
Distributions in the Human Brain
- Authors: Jan-Oliver Kropp, Christian Schiffer, Katrin Amunts, Timo Dickscheid
- Abstract summary: We propose a denoising diffusion probabilistic model (DDPM) trained on light-microscopic scans of cell-body stained sections.
We show that our trained DDPM is able to generate highly realistic image information for this purpose, generating plausible cell statistics and cytoarchitectonic patterns.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in imaging and high-performance computing have made it
possible to image the entire human brain at the cellular level. This is the
basis to study the multi-scale architecture of the brain regarding its
subdivision into brain areas and nuclei, cortical layers, columns, and cell
clusters down to single cell morphology Methods for brain mapping and cell
segmentation exploit such images to enable rapid and automated analysis of
cytoarchitecture and cell distribution in complete series of histological
sections. However, the presence of inevitable processing artifacts in the image
data caused by missing sections, tears in the tissue, or staining variations
remains the primary reason for gaps in the resulting image data. To this end we
aim to provide a model that can fill in missing information in a reliable way,
following the true cell distribution at different scales. Inspired by the
recent success in image generation, we propose a denoising diffusion
probabilistic model (DDPM), trained on light-microscopic scans of cell-body
stained sections. We extend this model with the RePaint method to impute
missing or replace corrupted image data. We show that our trained DDPM is able
to generate highly realistic image information for this purpose, generating
plausible cell statistics and cytoarchitectonic patterns. We validate its
outputs using two established downstream task models trained on the same data.
Related papers
- Interpretable Embeddings for Segmentation-Free Single-Cell Analysis in Multiplex Imaging [1.8687965482996822]
Multiplex Imaging (MI) enables the simultaneous visualization of multiple biological markers in separate imaging channels at subcellular resolution.
We propose a segmentation-free deep learning approach that leverages grouped convolutions to learn interpretable embedded features from each imaging channel.
arXiv Detail & Related papers (2024-11-02T11:21:33Z) - Mask-guided cross-image attention for zero-shot in-silico histopathologic image generation with a diffusion model [0.10910416614141322]
Diffusion models are the state-of-the-art solution for generating in-silico images.
Appearance transfer diffusion models are designed for natural images.
In computational pathology, specifically in oncology, it is not straightforward to define which objects in an image should be classified as foreground and background.
We contribute to the applicability of appearance transfer models to diffusion-stained images by modifying the appearance transfer guidance to alternate between class-specific AdaIN feature statistics matchings.
arXiv Detail & Related papers (2024-07-16T12:36:26Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
We present a weakly supervised method to generate a healthy version of a diseased image and then use it to obtain a pixel-wise anomaly map.
We employ a diffusion model trained on healthy samples and combine Denoising Diffusion Probabilistic Model (DDPM) and Denoising Implicit Model (DDIM) at each step of the sampling process.
arXiv Detail & Related papers (2023-08-03T21:56:50Z) - DIRE for Diffusion-Generated Image Detection [128.95822613047298]
We propose a novel representation called DIffusion Reconstruction Error (DIRE)
DIRE measures the error between an input image and its reconstruction counterpart by a pre-trained diffusion model.
It provides a hint that DIRE can serve as a bridge to distinguish generated and real images.
arXiv Detail & Related papers (2023-03-16T13:15:03Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - Enforcing Morphological Information in Fully Convolutional Networks to
Improve Cell Instance Segmentation in Fluorescence Microscopy Images [1.408123603417833]
We propose a novel cell instance segmentation approach based on the well-known U-Net architecture.
To enforce the learning of morphological information per pixel, a deep distance transformer (DDT) acts as a back-bone model.
The obtained results suggest a performance boost over traditional U-Net architectures.
arXiv Detail & Related papers (2021-06-10T15:54:38Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Pixel precise unsupervised detection of viral particle proliferation in
cellular imaging data [0.0]
We use computer generated images from a study of experimentally obtained cell imaging data representing viral particle proliferation in host cell monolayers.
In this study viral particle increase in time is simulated by a one-by-one increase, across images, in black or gray single pixels representing dead or partially infected cells, and hypothetical remission by a one-by-one increase in white pixels coding for living cells.
Unsupervised classification by SOM-QE of 160 model images, each with more than three million pixels, is shown to provide a statistically reliable, pixel precise, and fast classification model.
arXiv Detail & Related papers (2020-11-10T16:06:03Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.