PixCell: A generative foundation model for digital histopathology images
- URL: http://arxiv.org/abs/2506.05127v1
- Date: Thu, 05 Jun 2025 15:14:32 GMT
- Title: PixCell: A generative foundation model for digital histopathology images
- Authors: Srikar Yellapragada, Alexandros Graikos, Zilinghan Li, Kostas Triaridis, Varun Belagali, Saarthak Kapse, Tarak Nath Nandi, Ravi K Madduri, Prateek Prasanna, Tahsin Kurc, Rajarsi R. Gupta, Joel Saltz, Dimitris Samaras,
- Abstract summary: We introduce PixCell, the first diffusion-based generative foundation model for histopathology.<n>We train PixCell on PanCan-30M, a vast, diverse dataset derived from 69,184 H&E-stained whole slide images covering various cancer types.
- Score: 49.00921097924924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The digitization of histology slides has revolutionized pathology, providing massive datasets for cancer diagnosis and research. Contrastive self-supervised and vision-language models have been shown to effectively mine large pathology datasets to learn discriminative representations. On the other hand, generative models, capable of synthesizing realistic and diverse images, present a compelling solution to address unique problems in pathology that involve synthesizing images; overcoming annotated data scarcity, enabling privacy-preserving data sharing, and performing inherently generative tasks, such as virtual staining. We introduce PixCell, the first diffusion-based generative foundation model for histopathology. We train PixCell on PanCan-30M, a vast, diverse dataset derived from 69,184 H\&E-stained whole slide images covering various cancer types. We employ a progressive training strategy and a self-supervision-based conditioning that allows us to scale up training without any annotated data. PixCell generates diverse and high-quality images across multiple cancer types, which we find can be used in place of real data to train a self-supervised discriminative model. Synthetic images shared between institutions are subject to fewer regulatory barriers than would be the case with real clinical images. Furthermore, we showcase the ability to precisely control image generation using a small set of annotated images, which can be used for both data augmentation and educational purposes. Testing on a cell segmentation task, a mask-guided PixCell enables targeted data augmentation, improving downstream performance. Finally, we demonstrate PixCell's ability to use H\&E structural staining to infer results from molecular marker studies; we use this capability to infer IHC staining from H\&E images. Our trained models are publicly released to accelerate research in computational pathology.
Related papers
- Diverse Image Generation with Diffusion Models and Cross Class Label Learning for Polyp Classification [4.747649393635696]
We develop a novel model, PathoPolyp-Diff, that generates text-controlled synthetic images with diverse characteristics.<n>We introduce cross-class label learning to make the model learn features from other classes, reducing the burdensome task of data annotation.
arXiv Detail & Related papers (2025-02-08T04:26:20Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - Denoising Diffusion Probabilistic Models for Image Inpainting of Cell
Distributions in the Human Brain [0.0]
We propose a denoising diffusion probabilistic model (DDPM) trained on light-microscopic scans of cell-body stained sections.
We show that our trained DDPM is able to generate highly realistic image information for this purpose, generating plausible cell statistics and cytoarchitectonic patterns.
arXiv Detail & Related papers (2023-11-28T14:34:04Z) - Virchow: A Million-Slide Digital Pathology Foundation Model [34.38679208931425]
We present Virchow, a foundation model for computational pathology.
Virchow is a vision transformer model with 632 million parameters trained on 1.5 million hematoxylin and eosin stained whole slide images.
arXiv Detail & Related papers (2023-09-14T15:09:35Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - Self-Supervised Representation Learning using Visual Field Expansion on
Digital Pathology [7.568373895297608]
A key challenge in the analysis of such images is their size, which can run into the gigapixels.
We propose a novel generative framework that can learn powerful representations for such tiles by learning to plausibly expand their visual field.
Our model learns to generate different tissue types with fine details, while simultaneously learning powerful representations that can be used for different clinical endpoints.
arXiv Detail & Related papers (2021-09-07T19:20:01Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Federated Learning for Computational Pathology on Gigapixel Whole Slide
Images [4.035591045544291]
We introduce privacy-preserving federated learning for gigapixel whole slide images in computational pathology.
We evaluate our approach on two different diagnostic problems using thousands of histology whole slide images with only slide-level labels.
arXiv Detail & Related papers (2020-09-21T21:56:08Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.