Uncertain Quantum Critical Metrology: From Single to Multi Parameter Sensing
- URL: http://arxiv.org/abs/2407.19917v1
- Date: Mon, 29 Jul 2024 11:50:21 GMT
- Title: Uncertain Quantum Critical Metrology: From Single to Multi Parameter Sensing
- Authors: George Mihailescu, Steve Campbell, Karol Gietka,
- Abstract summary: We show how uncertainty in control parameters impacts the sensitivity of critical sensors.
For finite-size systems, we establish a trade-off between the amount of uncertainty a many-body probe can withstand while still maintaining a quantum advantage in parameter estimation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Critical quantum metrology relies on the extreme sensitivity of a system's eigenstates near the critical point of a quantum phase transition to Hamiltonian perturbations. This means that these eigenstates are extremely sensitive to all the parameters of the Hamiltonian. In practical settings, there always exists a degree of experimental uncertainty in the control parameters - which are approximately known quantities. Despite such uncertainties representing the most relevant source of noise in critical metrology, their impact on the attainable precision has been largely overlooked. In this work we present a general framework, interpolating between the single and multi-parameter estimation settings, allowing for the proper bookkeeping of relevant errors. We apply this framework to the paradigmatic transverse field Ising and Lipkin-Meshkov-Glick models, explicitly showing how uncertainty in control parameters impacts the sensitivity of critical sensors. For finite-size systems, we establish that there exists a trade-off between the amount of uncertainty a many-body probe can withstand while still maintaining a quantum advantage in parameter estimation.
Related papers
- Qualitative differences in the robust controllability of model two-qubit systems [0.0]
We consider two model Hamiltonians with a continuous parameter that is partly unknown.
We assess robust controllability against this parameter uncertainty using existing theoretical frameworks.
We introduce a penalty term into the fidelity function to optimize control pulses, enhancing robustness against the influence of parameter fluctuations.
arXiv Detail & Related papers (2025-02-06T14:25:15Z) - Achieving the Multi-parameter Quantum Cramér-Rao Bound with Antiunitary Symmetry [18.64293022108985]
We propose a novel and comprehensive approach to optimize the parameters encoding strategies with the aid of antiunitary symmetry.
The results showcase the simultaneous achievement of ultimate precision for multiple parameters without any trade-off.
arXiv Detail & Related papers (2024-11-22T13:37:43Z) - Collective quantum enhancement in critical quantum sensing [37.69303106863453]
We show that collective quantum advantage can be achieved with a multipartite critical quantum sensor based on a parametrically coupled Kerr resonators chain.
We derive analytical solutions for the low-energy spectrum of this unconventional quantum many-body system.
We evaluate the scaling of the quantum Fisher information with respect to fundamental resources, and find that the critical chain achieves a quadratic enhancement in the number of resonators.
arXiv Detail & Related papers (2024-07-25T14:08:39Z) - Multicritical quantum sensors driven by symmetry-breaking [0.7499722271664147]
We analytically demonstrate that symmetry-breaking can drive a quantum enhanced sensing in single- or multi parameter estimation.
We show that it is possible to obtain super-Heisenberg scaling by combining the effects of symmetry-breaking and gapless-to-gapped transition.
arXiv Detail & Related papers (2024-07-19T15:57:02Z) - Dimension matters: precision and incompatibility in multi-parameter
quantum estimation models [44.99833362998488]
We study the role of probe dimension in determining the bounds of precision in quantum estimation problems.
We also critically examine the performance of the so-called incompatibility (AI) in characterizing the difference between the Holevo-Cram'er-Rao bound and the Symmetric Logarithmic Derivative (SLD) one.
arXiv Detail & Related papers (2024-03-11T18:59:56Z) - Multiparameter critical quantum metrology with impurity probes [0.0]
We introduce the two-impurity Kondo (2IK) model as a novel paradigm for critical quantum metrology.
We demonstrate that by applying a known control field, the singularity can be removed and measurement sensitivity restored.
arXiv Detail & Related papers (2023-11-28T16:32:51Z) - Multiparameter estimation perspective on non-Hermitian
singularity-enhanced sensing [0.0]
We study the possibility of achieving unbounded sensitivity when using the system to sense linear singularity perturbations away from a singular point.
We identify under what conditions and at what rate can the resulting sensitivity indeed diverge, in order to show that nuisance parameters should be generally included in the analysis.
arXiv Detail & Related papers (2023-03-09T19:00:09Z) - Multiparameter quantum critical metrology [0.0]
We argue that quantum criticality may also play a positive role in reducing the incompatibility in the simultaneous estimation of multiple parameters.
The antiferromagnetic and ferromagnetic 1-D Ising chain with both transverse and longitudinal fields are analysed.
arXiv Detail & Related papers (2022-03-23T19:00:01Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Generalizable control for multiparameter quantum metrology [20.506414877440644]
We study the generalizability of optimal control, namely, optimal controls that can be systematically updated across a range of parameters with minimal cost.
We argue that the generalization of reinforcement learning is through a mechanism similar to the analytical scheme.
arXiv Detail & Related papers (2020-12-24T18:04:46Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.