HumanGaussian: Text-Driven 3D Human Generation with Gaussian Splatting
- URL: http://arxiv.org/abs/2311.17061v2
- Date: Thu, 14 Mar 2024 17:58:14 GMT
- Title: HumanGaussian: Text-Driven 3D Human Generation with Gaussian Splatting
- Authors: Xian Liu, Xiaohang Zhan, Jiaxiang Tang, Ying Shan, Gang Zeng, Dahua Lin, Xihui Liu, Ziwei Liu,
- Abstract summary: Existing methods optimize 3D representations like mesh or neural fields via score distillation sampling (SDS), which suffers from inadequate fine details or excessive training time.
In this paper, we propose an efficient yet effective framework, HumanGaussian, that generates high-quality 3D humans with fine-grained geometry and realistic appearance.
- Score: 113.37908093915837
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Realistic 3D human generation from text prompts is a desirable yet challenging task. Existing methods optimize 3D representations like mesh or neural fields via score distillation sampling (SDS), which suffers from inadequate fine details or excessive training time. In this paper, we propose an efficient yet effective framework, HumanGaussian, that generates high-quality 3D humans with fine-grained geometry and realistic appearance. Our key insight is that 3D Gaussian Splatting is an efficient renderer with periodic Gaussian shrinkage or growing, where such adaptive density control can be naturally guided by intrinsic human structures. Specifically, 1) we first propose a Structure-Aware SDS that simultaneously optimizes human appearance and geometry. The multi-modal score function from both RGB and depth space is leveraged to distill the Gaussian densification and pruning process. 2) Moreover, we devise an Annealed Negative Prompt Guidance by decomposing SDS into a noisier generative score and a cleaner classifier score, which well addresses the over-saturation issue. The floating artifacts are further eliminated based on Gaussian size in a prune-only phase to enhance generation smoothness. Extensive experiments demonstrate the superior efficiency and competitive quality of our framework, rendering vivid 3D humans under diverse scenarios. Project Page: https://alvinliu0.github.io/projects/HumanGaussian
Related papers
- GSGAN: Adversarial Learning for Hierarchical Generation of 3D Gaussian Splats [20.833116566243408]
In this paper, we exploit Gaussian as a 3D representation for 3D GANs by leveraging its efficient and explicit characteristics.
We introduce a generator architecture with a hierarchical multi-scale Gaussian representation that effectively regularizes the position and scale of generated Gaussians.
Experimental results demonstrate that ours achieves a significantly faster rendering speed (x100) compared to state-of-the-art 3D consistent GANs.
arXiv Detail & Related papers (2024-06-05T05:52:20Z) - OccGaussian: 3D Gaussian Splatting for Occluded Human Rendering [55.50438181721271]
Previous method utilizing NeRF for surface rendering to recover the occluded areas requires more than one day to train and several seconds to render occluded areas.
We propose OccGaussian based on 3D Gaussian Splatting, which can be trained within 6 minutes and produces high-quality human renderings up to 160 FPS with occluded input.
arXiv Detail & Related papers (2024-04-12T13:00:06Z) - GVGEN: Text-to-3D Generation with Volumetric Representation [89.55687129165256]
3D Gaussian splatting has emerged as a powerful technique for 3D reconstruction and generation, known for its fast and high-quality rendering capabilities.
This paper introduces a novel diffusion-based framework, GVGEN, designed to efficiently generate 3D Gaussian representations from text input.
arXiv Detail & Related papers (2024-03-19T17:57:52Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - AGG: Amortized Generative 3D Gaussians for Single Image to 3D [108.38567665695027]
We introduce an Amortized Generative 3D Gaussian framework (AGG) that instantly produces 3D Gaussians from a single image.
AGG decomposes the generation of 3D Gaussian locations and other appearance attributes for joint optimization.
We propose a cascaded pipeline that first generates a coarse representation of the 3D data and later upsamples it with a 3D Gaussian super-resolution module.
arXiv Detail & Related papers (2024-01-08T18:56:33Z) - DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation [55.661467968178066]
We propose DreamGaussian, a novel 3D content generation framework that achieves both efficiency and quality simultaneously.
Our key insight is to design a generative 3D Gaussian Splatting model with companioned mesh extraction and texture refinement in UV space.
In contrast to the occupancy pruning used in Neural Radiance Fields, we demonstrate that the progressive densification of 3D Gaussians converges significantly faster for 3D generative tasks.
arXiv Detail & Related papers (2023-09-28T17:55:05Z) - Text-to-3D using Gaussian Splatting [18.163413810199234]
This paper proposes GSGEN, a novel method that adopts Gaussian Splatting, a recent state-of-the-art representation, to text-to-3D generation.
GSGEN aims at generating high-quality 3D objects and addressing existing shortcomings by exploiting the explicit nature of Gaussian Splatting.
Our approach can generate 3D assets with delicate details and accurate geometry.
arXiv Detail & Related papers (2023-09-28T16:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.