OccGaussian: 3D Gaussian Splatting for Occluded Human Rendering
- URL: http://arxiv.org/abs/2404.08449v2
- Date: Mon, 15 Apr 2024 02:10:45 GMT
- Title: OccGaussian: 3D Gaussian Splatting for Occluded Human Rendering
- Authors: Jingrui Ye, Zongkai Zhang, Yujiao Jiang, Qingmin Liao, Wenming Yang, Zongqing Lu,
- Abstract summary: Previous method utilizing NeRF for surface rendering to recover the occluded areas requires more than one day to train and several seconds to render occluded areas.
We propose OccGaussian based on 3D Gaussian Splatting, which can be trained within 6 minutes and produces high-quality human renderings up to 160 FPS with occluded input.
- Score: 55.50438181721271
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rendering dynamic 3D human from monocular videos is crucial for various applications such as virtual reality and digital entertainment. Most methods assume the people is in an unobstructed scene, while various objects may cause the occlusion of body parts in real-life scenarios. Previous method utilizing NeRF for surface rendering to recover the occluded areas, but it requiring more than one day to train and several seconds to render, failing to meet the requirements of real-time interactive applications. To address these issues, we propose OccGaussian based on 3D Gaussian Splatting, which can be trained within 6 minutes and produces high-quality human renderings up to 160 FPS with occluded input. OccGaussian initializes 3D Gaussian distributions in the canonical space, and we perform occlusion feature query at occluded regions, the aggregated pixel-align feature is extracted to compensate for the missing information. Then we use Gaussian Feature MLP to further process the feature along with the occlusion-aware loss functions to better perceive the occluded area. Extensive experiments both in simulated and real-world occlusions, demonstrate that our method achieves comparable or even superior performance compared to the state-of-the-art method. And we improving training and inference speeds by 250x and 800x, respectively. Our code will be available for research purposes.
Related papers
- I3DGS: Improve 3D Gaussian Splatting from Multiple Dimensions [0.0]
3D Gaussian Splatting is a novel method for 3D view synthesis, which can gain an implicit neural learning rendering result.
It is still difficult to achieve a fast enough efficiency on 3D Gaussian Splatting for the practical applications.
We propose the I3DS, a synthetic model performance improvement evaluation solution and experiments test.
arXiv Detail & Related papers (2024-05-10T11:42:44Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - Deblurring 3D Gaussian Splatting [7.315329140016319]
We propose a novel real-time deblurring framework, Deblurring 3D Gaussian Splatting, using a small Multi-Layer Perceptron (MLP)
While Deblurring 3D Gaussian Splatting can still enjoy real-time rendering, it can reconstruct fine and sharp details from blurry images.
arXiv Detail & Related papers (2024-01-01T18:23:51Z) - ASH: Animatable Gaussian Splats for Efficient and Photoreal Human Rendering [62.81677824868519]
We propose an animatable Gaussian splatting approach for photorealistic rendering of dynamic humans in real-time.
We parameterize the clothed human as animatable 3D Gaussians, which can be efficiently splatted into image space to generate the final rendering.
We benchmark ASH with competing methods on pose-controllable avatars, demonstrating that our method outperforms existing real-time methods by a large margin and shows comparable or even better results than offline methods.
arXiv Detail & Related papers (2023-12-10T17:07:37Z) - GauHuman: Articulated Gaussian Splatting from Monocular Human Videos [58.553979884950834]
GauHuman is a 3D human model with Gaussian Splatting for both fast training (1 2 minutes) and real-time rendering (up to 189 FPS)
GauHuman encodes Gaussian Splatting in the canonical space and transforms 3D Gaussians from canonical space to posed space with linear blend skinning (LBS)
Experiments on ZJU_Mocap and MonoCap datasets demonstrate that GauHuman achieves state-of-the-art performance quantitatively and qualitatively with fast training and real-time rendering speed.
arXiv Detail & Related papers (2023-12-05T18:59:14Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z) - HumanGaussian: Text-Driven 3D Human Generation with Gaussian Splatting [113.37908093915837]
Existing methods optimize 3D representations like mesh or neural fields via score distillation sampling (SDS), which suffers from inadequate fine details or excessive training time.
In this paper, we propose an efficient yet effective framework, HumanGaussian, that generates high-quality 3D humans with fine-grained geometry and realistic appearance.
arXiv Detail & Related papers (2023-11-28T18:59:58Z) - Animatable 3D Gaussians for High-fidelity Synthesis of Human Motions [37.50707388577952]
We present a novel animatable 3D Gaussian model for rendering high-fidelity free-view human motions in real time.
Compared to existing NeRF-based methods, the model owns better capability in high-frequency details without the jittering problem across video frames.
arXiv Detail & Related papers (2023-11-22T14:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.