Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation
- URL: http://arxiv.org/abs/2311.17117v3
- Date: Thu, 13 Jun 2024 06:37:20 GMT
- Title: Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation
- Authors: Li Hu, Xin Gao, Peng Zhang, Ke Sun, Bang Zhang, Liefeng Bo,
- Abstract summary: diffusion models have become the mainstream in visual generation research, owing to their robust generative capabilities.
In this paper, we propose a novel framework tailored for character animation.
By expanding the training data, our approach can animate arbitrary characters, yielding superior results in character animation compared to other image-to-video methods.
- Score: 27.700371215886683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Character Animation aims to generating character videos from still images through driving signals. Currently, diffusion models have become the mainstream in visual generation research, owing to their robust generative capabilities. However, challenges persist in the realm of image-to-video, especially in character animation, where temporally maintaining consistency with detailed information from character remains a formidable problem. In this paper, we leverage the power of diffusion models and propose a novel framework tailored for character animation. To preserve consistency of intricate appearance features from reference image, we design ReferenceNet to merge detail features via spatial attention. To ensure controllability and continuity, we introduce an efficient pose guider to direct character's movements and employ an effective temporal modeling approach to ensure smooth inter-frame transitions between video frames. By expanding the training data, our approach can animate arbitrary characters, yielding superior results in character animation compared to other image-to-video methods. Furthermore, we evaluate our method on benchmarks for fashion video and human dance synthesis, achieving state-of-the-art results.
Related papers
- Alignment is All You Need: A Training-free Augmentation Strategy for Pose-guided Video Generation [19.408715783816167]
We introduce a training-free framework that ensures the generated video sequence preserves the reference image's subtleties.
We decouple skeletal and motion priors from pose information, enabling precise control over animation generation.
Our method significantly enhances the quality of video generation without the need for large datasets or expensive computational resources.
arXiv Detail & Related papers (2024-08-29T13:08:12Z) - Follow-Your-Pose v2: Multiple-Condition Guided Character Image Animation for Stable Pose Control [77.08568533331206]
Follow-Your-Pose v2 can be trained on noisy open-sourced videos readily available on the internet.
Our approach outperforms state-of-the-art methods by a margin of over 35% across 2 datasets and on 7 metrics.
arXiv Detail & Related papers (2024-06-05T08:03:18Z) - UniAnimate: Taming Unified Video Diffusion Models for Consistent Human Image Animation [53.16986875759286]
We present a UniAnimate framework to enable efficient and long-term human video generation.
We map the reference image along with the posture guidance and noise video into a common feature space.
We also propose a unified noise input that supports random noised input as well as first frame conditioned input.
arXiv Detail & Related papers (2024-06-03T10:51:10Z) - Zero-shot High-fidelity and Pose-controllable Character Animation [89.74818983864832]
Image-to-video (I2V) generation aims to create a video sequence from a single image.
Existing approaches suffer from inconsistency of character appearances and poor preservation of fine details.
We propose PoseAnimate, a novel zero-shot I2V framework for character animation.
arXiv Detail & Related papers (2024-04-21T14:43:31Z) - AniClipart: Clipart Animation with Text-to-Video Priors [28.76809141136148]
We introduce AniClipart, a system that transforms static images into high-quality motion sequences guided by text-to-video priors.
Experimental results show that the proposed AniClipart consistently outperforms existing image-to-video generation models.
arXiv Detail & Related papers (2024-04-18T17:24:28Z) - AnimateZero: Video Diffusion Models are Zero-Shot Image Animators [63.938509879469024]
We propose AnimateZero to unveil the pre-trained text-to-video diffusion model, i.e., AnimateDiff.
For appearance control, we borrow intermediate latents and their features from the text-to-image (T2I) generation.
For temporal control, we replace the global temporal attention of the original T2V model with our proposed positional-corrected window attention.
arXiv Detail & Related papers (2023-12-06T13:39:35Z) - MagicAnimate: Temporally Consistent Human Image Animation using
Diffusion Model [74.84435399451573]
This paper studies the human image animation task, which aims to generate a video of a certain reference identity following a particular motion sequence.
Existing animation works typically employ the frame-warping technique to animate the reference image towards the target motion.
We introduce MagicAnimate, a diffusion-based framework that aims at enhancing temporal consistency, preserving reference image faithfully, and improving animation fidelity.
arXiv Detail & Related papers (2023-11-27T18:32:31Z) - DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors [63.43133768897087]
We propose a method to convert open-domain images into animated videos.
The key idea is to utilize the motion prior to text-to-video diffusion models by incorporating the image into the generative process as guidance.
Our proposed method can produce visually convincing and more logical & natural motions, as well as higher conformity to the input image.
arXiv Detail & Related papers (2023-10-18T14:42:16Z) - Going beyond Free Viewpoint: Creating Animatable Volumetric Video of
Human Performances [7.7824496657259665]
We present an end-to-end pipeline for the creation of high-quality animatable volumetric video content of human performances.
Semantic enrichment and geometric animation ability are achieved by establishing temporal consistency in the 3D data.
For pose editing, we exploit the captured data as much as possible and kinematically deform the captured frames to fit a desired pose.
arXiv Detail & Related papers (2020-09-02T09:46:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.