Follow-Your-Pose v2: Multiple-Condition Guided Character Image Animation for Stable Pose Control
- URL: http://arxiv.org/abs/2406.03035v3
- Date: Thu, 13 Jun 2024 01:17:18 GMT
- Title: Follow-Your-Pose v2: Multiple-Condition Guided Character Image Animation for Stable Pose Control
- Authors: Jingyun Xue, Hongfa Wang, Qi Tian, Yue Ma, Andong Wang, Zhiyuan Zhao, Shaobo Min, Wenzhe Zhao, Kaihao Zhang, Heung-Yeung Shum, Wei Liu, Mengyang Liu, Wenhan Luo,
- Abstract summary: Follow-Your-Pose v2 can be trained on noisy open-sourced videos readily available on the internet.
Our approach outperforms state-of-the-art methods by a margin of over 35% across 2 datasets and on 7 metrics.
- Score: 77.08568533331206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pose-controllable character video generation is in high demand with extensive applications for fields such as automatic advertising and content creation on social media platforms. While existing character image animation methods using pose sequences and reference images have shown promising performance, they tend to struggle with incoherent animation in complex scenarios, such as multiple character animation and body occlusion. Additionally, current methods request large-scale high-quality videos with stable backgrounds and temporal consistency as training datasets, otherwise, their performance will greatly deteriorate. These two issues hinder the practical utilization of character image animation tools. In this paper, we propose a practical and robust framework Follow-Your-Pose v2, which can be trained on noisy open-sourced videos readily available on the internet. Multi-condition guiders are designed to address the challenges of background stability, body occlusion in multi-character generation, and consistency of character appearance. Moreover, to fill the gap of fair evaluation of multi-character pose animation, we propose a new benchmark comprising approximately 4,000 frames. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods by a margin of over 35% across 2 datasets and on 7 metrics. Meanwhile, qualitative assessments reveal a significant improvement in the quality of generated video, particularly in scenarios involving complex backgrounds and body occlusion of multi-character, suggesting the superiority of our approach.
Related papers
- Alignment is All You Need: A Training-free Augmentation Strategy for Pose-guided Video Generation [19.408715783816167]
We introduce a training-free framework that ensures the generated video sequence preserves the reference image's subtleties.
We decouple skeletal and motion priors from pose information, enabling precise control over animation generation.
Our method significantly enhances the quality of video generation without the need for large datasets or expensive computational resources.
arXiv Detail & Related papers (2024-08-29T13:08:12Z) - UniAnimate: Taming Unified Video Diffusion Models for Consistent Human Image Animation [53.16986875759286]
We present a UniAnimate framework to enable efficient and long-term human video generation.
We map the reference image along with the posture guidance and noise video into a common feature space.
We also propose a unified noise input that supports random noised input as well as first frame conditioned input.
arXiv Detail & Related papers (2024-06-03T10:51:10Z) - VividPose: Advancing Stable Video Diffusion for Realistic Human Image Animation [79.99551055245071]
We propose VividPose, an end-to-end pipeline that ensures superior temporal stability.
An identity-aware appearance controller integrates additional facial information without compromising other appearance details.
A geometry-aware pose controller utilizes both dense rendering maps from SMPL-X and sparse skeleton maps.
VividPose exhibits superior generalization capabilities on our proposed in-the-wild dataset.
arXiv Detail & Related papers (2024-05-28T13:18:32Z) - Zero-shot High-fidelity and Pose-controllable Character Animation [89.74818983864832]
Image-to-video (I2V) generation aims to create a video sequence from a single image.
Existing approaches suffer from inconsistency of character appearances and poor preservation of fine details.
We propose PoseAnimate, a novel zero-shot I2V framework for character animation.
arXiv Detail & Related papers (2024-04-21T14:43:31Z) - CharacterGen: Efficient 3D Character Generation from Single Images with Multi-View Pose Canonicalization [27.55341255800119]
We present CharacterGen, a framework developed to efficiently generate 3D characters.
A transformer-based, generalizable sparse-view reconstruction model is the other core component of our approach.
We have curated a dataset of anime characters, rendered in multiple poses and views, to train and evaluate our model.
arXiv Detail & Related papers (2024-02-27T05:10:59Z) - Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation [27.700371215886683]
diffusion models have become the mainstream in visual generation research, owing to their robust generative capabilities.
In this paper, we propose a novel framework tailored for character animation.
By expanding the training data, our approach can animate arbitrary characters, yielding superior results in character animation compared to other image-to-video methods.
arXiv Detail & Related papers (2023-11-28T12:27:15Z) - MagicAnimate: Temporally Consistent Human Image Animation using
Diffusion Model [74.84435399451573]
This paper studies the human image animation task, which aims to generate a video of a certain reference identity following a particular motion sequence.
Existing animation works typically employ the frame-warping technique to animate the reference image towards the target motion.
We introduce MagicAnimate, a diffusion-based framework that aims at enhancing temporal consistency, preserving reference image faithfully, and improving animation fidelity.
arXiv Detail & Related papers (2023-11-27T18:32:31Z) - DeepMultiCap: Performance Capture of Multiple Characters Using Sparse
Multiview Cameras [63.186486240525554]
DeepMultiCap is a novel method for multi-person performance capture using sparse multi-view cameras.
Our method can capture time varying surface details without the need of using pre-scanned template models.
arXiv Detail & Related papers (2021-05-01T14:32:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.