Fast Particle-based Anomaly Detection Algorithm with Variational
Autoencoder
- URL: http://arxiv.org/abs/2311.17162v1
- Date: Tue, 28 Nov 2023 19:00:29 GMT
- Title: Fast Particle-based Anomaly Detection Algorithm with Variational
Autoencoder
- Authors: Ryan Liu, Abhijith Gandrakota, Jennifer Ngadiuba, Maria Spiropulu,
Jean-Roch Vlimant
- Abstract summary: We present Set-VAE, a particle-based variational autoencoder (VAE) anomaly detection algorithm.
We demonstrate a 2x signal efficiency gain compared with traditional subjettiness-based jet selection.
With an eye to the future deployment to trigger systems, we propose the CLIP-VAE, which reduces the inference-time cost of anomaly detection.
- Score: 1.658130005539979
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model-agnostic anomaly detection is one of the promising approaches in the
search for new beyond the standard model physics. In this paper, we present
Set-VAE, a particle-based variational autoencoder (VAE) anomaly detection
algorithm. We demonstrate a 2x signal efficiency gain compared with traditional
subjettiness-based jet selection. Furthermore, with an eye to the future
deployment to trigger systems, we propose the CLIP-VAE, which reduces the
inference-time cost of anomaly detection by using the KL-divergence loss as the
anomaly score, resulting in a 2x acceleration in latency and reducing the
caching requirement.
Related papers
- Attention and Autoencoder Hybrid Model for Unsupervised Online Anomaly
Detection [3.6049348666007934]
This paper introduces a hybrid attention and autoencoder (AE) model for unsupervised online anomaly detection in time series.
The autoencoder captures local structural patterns in short embeddings, while the attention model learns long-term features, facilitating parallel computing with positional encoding.
It employs an attention-based mechanism, akin to the deep transformer model, with key architectural modifications for predicting the next time step window in the autoencoder's latent space.
arXiv Detail & Related papers (2024-01-06T22:55:02Z) - Expert enhanced dynamic time warping based anomaly detection [1.3812010983144802]
We propose a novel anomaly detection method named Expert enhanced dynamic time warping anomaly detection (E-DTWA)
It is based on DTW with additional enhancements involving human-in-the-loop concept.
The main benefits of our approach comprise efficient detection, flexible retraining based on strong consideration of the expert's detection feedback.
arXiv Detail & Related papers (2023-10-02T04:54:04Z) - Quantile LSTM: A Robust LSTM for Anomaly Detection In Time Series Data [0.0]
We use a new learnable activation function in the popular Long Short Term Memory networks (LSTM) architecture to model temporal long-range dependency.
The proposed algorithms are compared with other well-known anomaly detection algorithms, such as Isolation Forest (iForest), Elliptic Envelope, Autoencoder, and modern Deep Learning models such as Deep Autoencoding Gaussian Mixture Model (DAGMM), Generative Adversarial Networks (GAN)
The algorithms have been tested on multiple industrial time-series datasets such as Yahoo, AWS, GE, and machine sensors.
arXiv Detail & Related papers (2023-02-17T06:03:16Z) - A Novel Self-Supervised Learning-Based Anomaly Node Detection Method
Based on an Autoencoder in Wireless Sensor Networks [4.249028315152528]
In this paper, a self-supervised learning-based anomaly node detection method based on an autoencoder is designed.
This method integrates temporal WSN data flow feature extraction, spatial position feature extraction and intermodal WSN correlation feature extraction.
Experiments show that the designed method outperforms the baselines, and the F1 score reaches 90.6%.
arXiv Detail & Related papers (2022-12-26T01:54:02Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Hierarchical Conditional Variational Autoencoder Based Acoustic Anomaly
Detection [8.136103644634348]
Existing approaches such as deep autoencoder (DAE), variational autoencoder (VAE), conditional variational autoencoder (CVAE) etc. have limited representation capabilities in the latent space.
We propose a new method named as hierarchical conditional variational autoencoder (HCVAE)
This method utilizes available taxonomic hierarchical knowledge about industrial facility to refine the latent space representation.
arXiv Detail & Related papers (2022-06-11T08:15:01Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
We propose a new objective function that measures the KL-divergence between normal and anomalous data.
The proposed method significantly outperforms several state-of-the-arts on multiple benchmark datasets.
arXiv Detail & Related papers (2020-12-09T08:16:35Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.