Quantile LSTM: A Robust LSTM for Anomaly Detection In Time Series Data
- URL: http://arxiv.org/abs/2302.08712v1
- Date: Fri, 17 Feb 2023 06:03:16 GMT
- Title: Quantile LSTM: A Robust LSTM for Anomaly Detection In Time Series Data
- Authors: Snehanshu Saha, Jyotirmoy Sarkar, Soma Dhavala, Santonu Sarkar,
Preyank Mota
- Abstract summary: We use a new learnable activation function in the popular Long Short Term Memory networks (LSTM) architecture to model temporal long-range dependency.
The proposed algorithms are compared with other well-known anomaly detection algorithms, such as Isolation Forest (iForest), Elliptic Envelope, Autoencoder, and modern Deep Learning models such as Deep Autoencoding Gaussian Mixture Model (DAGMM), Generative Adversarial Networks (GAN)
The algorithms have been tested on multiple industrial time-series datasets such as Yahoo, AWS, GE, and machine sensors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomalies refer to the departure of systems and devices from their normal
behaviour in standard operating conditions. An anomaly in an industrial device
can indicate an upcoming failure, often in the temporal direction. In this
paper, we make two contributions: 1) we estimate conditional quantiles and
consider three different ways to define anomalies based on the estimated
quantiles. 2) we use a new learnable activation function in the popular Long
Short Term Memory networks (LSTM) architecture to model temporal long-range
dependency. In particular, we propose Parametric Elliot Function (PEF) as an
activation function (AF) inside LSTM, which saturates lately compared to
sigmoid and tanh. The proposed algorithms are compared with other well-known
anomaly detection algorithms, such as Isolation Forest (iForest), Elliptic
Envelope, Autoencoder, and modern Deep Learning models such as Deep
Autoencoding Gaussian Mixture Model (DAGMM), Generative Adversarial Networks
(GAN). The algorithms are evaluated in terms of various performance metrics,
such as Precision and Recall. The algorithms have been tested on multiple
industrial time-series datasets such as Yahoo, AWS, GE, and machine sensors. We
have found that the LSTM-based quantile algorithms are very effective and
outperformed the existing algorithms in identifying anomalies.
Related papers
- A Bi-LSTM Autoencoder Framework for Anomaly Detection -- A Case Study of
a Wind Power Dataset [2.094022863940315]
Anomalies refer to data points or events that deviate from normal and homogeneous events.
This study presents a novel framework for time series anomaly detection using a combination of Bi-LSTM architecture and Autoencoder.
The Bi-LSTM Autoencoder model achieved a classification accuracy of 96.79% and outperformed more commonly used LSTM Autoencoder models.
arXiv Detail & Related papers (2023-03-17T00:24:28Z) - BSSAD: Towards A Novel Bayesian State-Space Approach for Anomaly
Detection in Multivariate Time Series [0.0]
We propose a novel and innovative approach to anomaly detection called Bayesian State-Space Anomaly Detection(BSSAD)
The design of our approach combines the strength of Bayesian state-space algorithms in predicting the next state and the effectiveness of recurrent neural networks and autoencoders.
In particular, we focus on using Bayesian state-space models of particle filters and ensemble Kalman filters.
arXiv Detail & Related papers (2023-01-30T16:21:18Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Anomaly Rule Detection in Sequence Data [2.3757190901941736]
We present a new anomaly detection framework called DUOS that enables Discovery of Utility-aware Outlier Sequential rules from a set of sequences.
In this work, we incorporate both the anomalousness and utility of a group, and then introduce the concept of utility-aware outlier rule (UOSR)
arXiv Detail & Related papers (2021-11-29T23:52:31Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
We propose a novel deep learning-based anomaly detection algorithm called Deep Convolutional Autoencoding Memory network (CAE-M)
We first build a Deep Convolutional Autoencoder to characterize spatial dependence of multi-sensor data with a Maximum Mean Discrepancy (MMD)
Then, we construct a Memory Network consisting of linear (Autoregressive Model) and non-linear predictions (Bigressive LSTM with Attention) to capture temporal dependence from time-series data.
arXiv Detail & Related papers (2021-07-27T06:48:20Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.