Minimax Exploiter: A Data Efficient Approach for Competitive Self-Play
- URL: http://arxiv.org/abs/2311.17190v1
- Date: Tue, 28 Nov 2023 19:34:40 GMT
- Title: Minimax Exploiter: A Data Efficient Approach for Competitive Self-Play
- Authors: Daniel Bairamian, Philippe Marcotte, Joshua Romoff, Gabriel Robert,
Derek Nowrouzezahrai
- Abstract summary: Minimax Exploiter is a game theoretic approach to exploiting Main Agents that leverages knowledge of its opponents.
We validate our approach in a diversity of settings, including simple turn based games, the arcade learning environment, and For Honor, a modern video game.
- Score: 12.754819077905061
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in Competitive Self-Play (CSP) have achieved, or even
surpassed, human level performance in complex game environments such as Dota 2
and StarCraft II using Distributed Multi-Agent Reinforcement Learning (MARL).
One core component of these methods relies on creating a pool of learning
agents -- consisting of the Main Agent, past versions of this agent, and
Exploiter Agents -- where Exploiter Agents learn counter-strategies to the Main
Agents. A key drawback of these approaches is the large computational cost and
physical time that is required to train the system, making them impractical to
deploy in highly iterative real-life settings such as video game productions.
In this paper, we propose the Minimax Exploiter, a game theoretic approach to
exploiting Main Agents that leverages knowledge of its opponents, leading to
significant increases in data efficiency. We validate our approach in a
diversity of settings, including simple turn based games, the arcade learning
environment, and For Honor, a modern video game. The Minimax Exploiter
consistently outperforms strong baselines, demonstrating improved stability and
data efficiency, leading to a robust CSP-MARL method that is both flexible and
easy to deploy.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning [25.857375787748715]
We present FightLadder, a real-time fighting game platform, to empower competitive MARL research.
We provide implementations of state-of-the-art MARL algorithms for competitive games, as well as a set of evaluation metrics.
We demonstrate the feasibility of this platform by training a general agent that consistently defeats 12 built-in characters in single-player mode.
arXiv Detail & Related papers (2024-06-04T08:04:23Z) - Deciphering Digital Detectives: Understanding LLM Behaviors and
Capabilities in Multi-Agent Mystery Games [26.07074182316433]
We introduce the first dataset specifically for Jubensha, including character scripts and game rules.
Our work also presents a unique multi-agent interaction framework using LLMs, allowing AI agents to autonomously engage in this game.
To evaluate the gaming performance of these AI agents, we developed novel methods measuring their mastery of case information and reasoning skills.
arXiv Detail & Related papers (2023-12-01T17:33:57Z) - DIAMBRA Arena: a New Reinforcement Learning Platform for Research and
Experimentation [91.3755431537592]
This work presents DIAMBRA Arena, a new platform for reinforcement learning research and experimentation.
It features a collection of high-quality environments exposing a Python API fully compliant with OpenAI Gym standard.
They are episodic tasks with discrete actions and observations composed by raw pixels plus additional numerical values.
arXiv Detail & Related papers (2022-10-19T14:39:10Z) - TiKick: Toward Playing Multi-agent Football Full Games from Single-agent
Demonstrations [31.596018856092513]
Tikick is the first learning-based AI system that can take over the multi-agent Google Research Football full game.
To the best of our knowledge, Tikick is the first learning-based AI system that can take over the multi-agent Google Research Football full game.
arXiv Detail & Related papers (2021-10-09T08:34:58Z) - Applying supervised and reinforcement learning methods to create
neural-network-based agents for playing StarCraft II [0.0]
We propose a neural network architecture for playing the full two-player match of StarCraft II trained with general-purpose supervised and reinforcement learning.
Our implementation achieves a non-trivial performance when compared to the in-game scripted bots.
arXiv Detail & Related papers (2021-09-26T20:08:10Z) - Strategically Efficient Exploration in Competitive Multi-agent
Reinforcement Learning [25.041622707261897]
This work seeks to understand the role of optimistic exploration in non-cooperative multi-agent settings.
We will show that, in zero-sum games, optimistic exploration can cause the learner to waste time sampling parts of the state space that are irrelevant to strategic play.
To address this issue, we introduce a formal notion of strategically efficient exploration in Markov games, and use this to develop two strategically efficient learning algorithms for finite Markov games.
arXiv Detail & Related papers (2021-07-30T15:22:59Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z) - Multi-Agent Collaboration via Reward Attribution Decomposition [75.36911959491228]
We propose Collaborative Q-learning (CollaQ) that achieves state-of-the-art performance in the StarCraft multi-agent challenge.
CollaQ is evaluated on various StarCraft Attribution maps and shows that it outperforms existing state-of-the-art techniques.
arXiv Detail & Related papers (2020-10-16T17:42:11Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
In this paper, we propose a combination of approaches that allow the agent to use low-quality demonstrations in complex vision-based environments.
Our proposed goal-oriented structuring of replay buffer allows the agent to automatically highlight sub-goals for solving complex hierarchical tasks in demonstrations.
The solution based on our algorithm beats all the solutions for the famous MineRL competition and allows the agent to mine a diamond in the Minecraft environment.
arXiv Detail & Related papers (2020-06-17T15:38:40Z) - Learning from Learners: Adapting Reinforcement Learning Agents to be
Competitive in a Card Game [71.24825724518847]
We present a study on how popular reinforcement learning algorithms can be adapted to learn and to play a real-world implementation of a competitive multiplayer card game.
We propose specific training and validation routines for the learning agents, in order to evaluate how the agents learn to be competitive and explain how they adapt to each others' playing style.
arXiv Detail & Related papers (2020-04-08T14:11:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.