AVA: Attentive VLM Agent for Mastering StarCraft II
- URL: http://arxiv.org/abs/2503.05383v3
- Date: Fri, 21 Mar 2025 06:14:36 GMT
- Title: AVA: Attentive VLM Agent for Mastering StarCraft II
- Authors: Weiyu Ma, Yuqian Fu, Zecheng Zhang, Bernard Ghanem, Guohao Li,
- Abstract summary: We introduce Attentive VLM Agent (AVA), a multimodal StarCraft II agent that aligns artificial agent perception with the human gameplay experience.<n>Our agent addresses this limitation by incorporating RGB visual inputs and natural language observations that more closely simulate human cognitive processes during gameplay.
- Score: 56.07921367623274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Attentive VLM Agent (AVA), a multimodal StarCraft II agent that aligns artificial agent perception with the human gameplay experience. Traditional frameworks such as SMAC rely on abstract state representations that diverge significantly from human perception, limiting the ecological validity of agent behavior. Our agent addresses this limitation by incorporating RGB visual inputs and natural language observations that more closely simulate human cognitive processes during gameplay. The AVA architecture consists of three integrated components: (1) a vision-language model enhanced with specialized self-attention mechanisms for strategic unit targeting and battlefield assessment, (2) a retrieval-augmented generation system that leverages domain-specific StarCraft II knowledge to inform tactical decisions, and (3) a dynamic role-based task distribution system that enables coordinated multi-agent behavior. The experimental evaluation in our proposed AVACraft environment, which contains 21 multimodal StarCraft II scenarios, demonstrates that AVA powered by foundation models (specifically Qwen-VL and GPT-4o) can execute complex tactical maneuvers without explicit training, achieving comparable performance to traditional MARL methods that require substantial training iterations. This work establishes a foundation for developing human-aligned StarCraft II agents and advances the broader research agenda of multimodal game AI. Our implementation is available at https://github.com/camel-ai/VLM-Play-StarCraft2.
Related papers
- Static Vs. Agentic Game Master AI for Facilitating Solo Role-Playing Experiences [3.383857646639421]
This paper presents a game master AI for single-player role-playing games.
The AI is designed to deliver interactive text-based narratives and experiences typically associated with multiplayer tabletop games like Dungeons & Dragons.
arXiv Detail & Related papers (2025-02-26T19:42:22Z) - Proposer-Agent-Evaluator(PAE): Autonomous Skill Discovery For Foundation Model Internet Agents [64.75036903373712]
Proposer-Agent-Evaluator is a learning system that enables foundation model agents to autonomously discover and practice skills in the wild.
At the heart of PAE is a context-aware task proposer that autonomously proposes tasks for the agent to practice with context information.
The success evaluation serves as the reward signal for the agent to refine its policies through RL.
arXiv Detail & Related papers (2024-12-17T18:59:50Z) - LLM-PySC2: Starcraft II learning environment for Large Language Models [16.918044347226104]
This paper introduces a new environment that serves to develop Large Language Models (LLMs) based decision-making methodologies.
This environment is the first to offer the complete StarCraft II action space, multi-modal observation interfaces, and a structured game knowledge database.
arXiv Detail & Related papers (2024-11-08T06:04:22Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
Large language models (LLMs) are considered a promising foundation to build such agents.
We take the first step towards building generally-capable LLM-based agents with self-evolution ability.
We propose AgentGym, a new framework featuring a variety of environments and tasks for broad, real-time, uni-format, and concurrent agent exploration.
arXiv Detail & Related papers (2024-06-06T15:15:41Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - Large Language Models Play StarCraft II: Benchmarks and A Chain of Summarization Approach [7.693497788883165]
Large language model (LLM) agents, such as Voyage and MetaGPT, present the immense potential in solving intricate tasks.
We propose a Chain of Summarization method, including single frame summarization for processing raw observations and multi frame summarization for analyzing game information.
Experiment results demonstrate that: 1. LLMs possess the relevant knowledge and complex planning abilities needed to address StarCraft II scenarios; 2. Human experts consider the performance of LLM agents to be close to that of an average player who has played StarCraft II for eight years; 3. LLM agents are capable of defeating the built in AI
arXiv Detail & Related papers (2023-12-19T05:27:16Z) - Minimax Exploiter: A Data Efficient Approach for Competitive Self-Play [12.754819077905061]
Minimax Exploiter is a game theoretic approach to exploiting Main Agents that leverages knowledge of its opponents.
We validate our approach in a diversity of settings, including simple turn based games, the arcade learning environment, and For Honor, a modern video game.
arXiv Detail & Related papers (2023-11-28T19:34:40Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.<n>Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.<n>Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - Applying supervised and reinforcement learning methods to create
neural-network-based agents for playing StarCraft II [0.0]
We propose a neural network architecture for playing the full two-player match of StarCraft II trained with general-purpose supervised and reinforcement learning.
Our implementation achieves a non-trivial performance when compared to the in-game scripted bots.
arXiv Detail & Related papers (2021-09-26T20:08:10Z) - Semantic Tracklets: An Object-Centric Representation for Visual
Multi-Agent Reinforcement Learning [126.57680291438128]
We study whether scalability can be achieved via a disentangled representation.
We evaluate semantic tracklets' on the visual multi-agent particle environment (VMPE) and on the challenging visual multi-agent GFootball environment.
Notably, this method is the first to successfully learn a strategy for five players in the GFootball environment using only visual data.
arXiv Detail & Related papers (2021-08-06T22:19:09Z) - Deep Policy Networks for NPC Behaviors that Adapt to Changing Design
Parameters in Roguelike Games [137.86426963572214]
Turn-based strategy games like Roguelikes, for example, present unique challenges to Deep Reinforcement Learning (DRL)
We propose two network architectures to better handle complex categorical state spaces and to mitigate the need for retraining forced by design decisions.
arXiv Detail & Related papers (2020-12-07T08:47:25Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
In this paper, we propose a combination of approaches that allow the agent to use low-quality demonstrations in complex vision-based environments.
Our proposed goal-oriented structuring of replay buffer allows the agent to automatically highlight sub-goals for solving complex hierarchical tasks in demonstrations.
The solution based on our algorithm beats all the solutions for the famous MineRL competition and allows the agent to mine a diamond in the Minecraft environment.
arXiv Detail & Related papers (2020-06-17T15:38:40Z) - Neural MMO v1.3: A Massively Multiagent Game Environment for Training
and Evaluating Neural Networks [48.5733173329785]
We present Neural MMO, a massively multiagent game environment inspired by MMOs.
We discuss our progress on two more general challenges in multiagent systems engineering for AI research: distributed infrastructure and game IO.
arXiv Detail & Related papers (2020-01-31T18:50:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.