Self-Discovering Interpretable Diffusion Latent Directions for Responsible Text-to-Image Generation
- URL: http://arxiv.org/abs/2311.17216v2
- Date: Thu, 28 Mar 2024 14:58:59 GMT
- Title: Self-Discovering Interpretable Diffusion Latent Directions for Responsible Text-to-Image Generation
- Authors: Hang Li, Chengzhi Shen, Philip Torr, Volker Tresp, Jindong Gu,
- Abstract summary: A risk with diffusion-based models is the potential generation of inappropriate content, such as biased or harmful images.
Previous work interprets vectors in an interpretable latent space of diffusion models as semantic concepts.
We propose a novel self-supervised approach to find interpretable latent directions for a given concept.
- Score: 36.93643249463899
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion-based models have gained significant popularity for text-to-image generation due to their exceptional image-generation capabilities. A risk with these models is the potential generation of inappropriate content, such as biased or harmful images. However, the underlying reasons for generating such undesired content from the perspective of the diffusion model's internal representation remain unclear. Previous work interprets vectors in an interpretable latent space of diffusion models as semantic concepts. However, existing approaches cannot discover directions for arbitrary concepts, such as those related to inappropriate concepts. In this work, we propose a novel self-supervised approach to find interpretable latent directions for a given concept. With the discovered vectors, we further propose a simple approach to mitigate inappropriate generation. Extensive experiments have been conducted to verify the effectiveness of our mitigation approach, namely, for fair generation, safe generation, and responsible text-enhancing generation. Project page: \url{https://interpretdiffusion.github.io}.
Related papers
- On the Fairness, Diversity and Reliability of Text-to-Image Generative Models [49.60774626839712]
multimodal generative models have sparked critical discussions on their fairness, reliability, and potential for misuse.
We propose an evaluation framework designed to assess model reliability through their responses to perturbations in the embedding space.
Our method lays the groundwork for detecting unreliable, bias-injected models and retrieval of bias provenance.
arXiv Detail & Related papers (2024-11-21T09:46:55Z) - Decoding Diffusion: A Scalable Framework for Unsupervised Analysis of Latent Space Biases and Representations Using Natural Language Prompts [68.48103545146127]
This paper proposes a novel framework for unsupervised exploration of diffusion latent spaces.
We directly leverage natural language prompts and image captions to map latent directions.
Our method provides a more scalable and interpretable understanding of the semantic knowledge encoded within diffusion models.
arXiv Detail & Related papers (2024-10-25T21:44:51Z) - Growth Inhibitors for Suppressing Inappropriate Image Concepts in Diffusion Models [35.2881940850787]
Text-to-image diffusion models inadvertently learn inappropriate concepts from vast and unfiltered training data.
Our method effectively captures the manifestation of subtle words at the image level, enabling direct and efficient erasure of target concepts.
arXiv Detail & Related papers (2024-08-02T05:17:14Z) - Safeguard Text-to-Image Diffusion Models with Human Feedback Inversion [51.931083971448885]
We propose a framework named Human Feedback Inversion (HFI), where human feedback on model-generated images is condensed into textual tokens guiding the mitigation or removal of problematic images.
Our experimental results demonstrate our framework significantly reduces objectionable content generation while preserving image quality, contributing to the ethical deployment of AI in the public sphere.
arXiv Detail & Related papers (2024-07-17T05:21:41Z) - Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models [58.74606272936636]
Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts.
The models could be exploited for malicious purposes, such as generating images with violence or nudity, or creating unauthorized portraits of public figures in inappropriate contexts.
concept removal methods have been proposed to modify diffusion models to prevent the generation of malicious and unwanted concepts.
arXiv Detail & Related papers (2024-06-21T03:58:44Z) - Concept Arithmetics for Circumventing Concept Inhibition in Diffusion Models [58.065255696601604]
We use compositional property of diffusion models, which allows to leverage multiple prompts in a single image generation.
We argue that it is essential to consider all possible approaches to image generation with diffusion models that can be employed by an adversary.
arXiv Detail & Related papers (2024-04-21T16:35:16Z) - Semantic Guidance Tuning for Text-To-Image Diffusion Models [3.3881449308956726]
We propose a training-free approach that modulates the guidance direction of diffusion models during inference.
We first decompose the prompt semantics into a set of concepts, and monitor the guidance trajectory in relation to each concept.
Based on this observation, we devise a technique to steer the guidance direction towards any concept from which the model diverges.
arXiv Detail & Related papers (2023-12-26T09:02:17Z) - Trade-offs in Fine-tuned Diffusion Models Between Accuracy and
Interpretability [5.865936619867771]
We unravel a consequential trade-off between image fidelity as gauged by conventional metrics and model interpretability in generative diffusion models.
We present a set of design principles for the development of truly interpretable generative models.
arXiv Detail & Related papers (2023-03-31T09:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.